首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 430 毫秒
1.
Two grades of low density polyethylene (LDPE) were blended with polyamide-6 (PA) in the 75/25 and 25/75 wt/wt ratios and shaped into ribbons with a Brabender single screw extruder. An ethylene-acrylic acid copolymer (EAA) was used in the 2 phr concentration as a compatibilizer precursor (CP). The morphology of the ribbons and its evolution during high temperature annealing were investigated by scanning electron microscopy (SEM). The results confirmed that EAA does actually behave as a reactive compatibilizer for the LDPE/PA blends. In fact, in the presence of EAA, the interfacial adhesion is improved, the dispersion of the minor phase particles is enhanced and their tendency toward fibrillation is increased, especially for the blends with the higher molar mass LDPE grade. The mechanical properties of the latter blends were found to be considerably enhanced by the addition of EAA, whereas the improvement was relatively modest for the blends with the lower molar mass LDPE. The fracture properties of double end notched samples of the ribbons prepared with the blends containing the lower molar mass LDPE grade were also studied. It was shown that, despite of the increased interfacial adhesion caused by the presence of EAA, the latter plays a measurable positive effect on the fracture properties only for the blends with LDPE as the matrix.  相似文献   

2.
利用扫描电子显微镜和动态力学分析仪研究了马来酸酐熔融接枝聚乙烯(PE-g-MA)对尼龙6/聚乙烯(PA6/PE)共混物形态结构和动态力学行为的影响.结果表明,PE-g-MA使PA6/PE共混物中PAe的玻璃化转变峰向低温例偏移,这主要归因于PE-g-MA改善了PA6和PE二者的相容性;但随着PE分散相中PE-g-MA所占比重的增加,PE-g-MA与PA6之间界面化学键合密度增大,使得PA6的玻璃化转变温度反而提高.同时,利用平行板流交仪研究了PE-g-MA对PA6/PE共混物熔体流变行为的影响.PE-g-MA使共混物熔体粘度和动态储能模量增大,这应归因于PA6/PE-g-MA之间在熔融共混过程中的界面化学键合.  相似文献   

3.
利用可视化双螺杆挤出机———光散射在线采集与分析系统对不相容聚合物体系聚乙烯 尼龙 10 10(PE PA10 10 )双螺杆挤出过程进行了在线分析 .相尺寸由Debye理论中的相关距离ac,平均弦长L ,以及分散相平均直径D描述 ,给出了几种参数表征适用的范围 .由在线光散射计算出的平均弦长Lscatt、分散相平均粒径Dscatt与电镜照片计算出的平均弦长LSEM 、分散相平均粒径DSEM 作了比较 ,两者比较符合 .结果表明 ,分散相颗粒尺寸沿螺杆挤出方向逐渐变小 ;随着低组分含量 (PA10 10≤ 5 0 % )的增加 ,分散相颗粒尺寸变大 ,在组成比为 70 30和 6 0 4 0时出现双连续相  相似文献   

4.
This work studies the crystallinity and rheology of HDPE/PA12 blends compatibilized with 2 wt% of HDPE-alt-MAH. Specimens of HDPE/PA12 blends were extruded and injected into a mold with 75/25, 50/50, and 25/75 HDPE/PA ratios. The Fourier-transform infrared spectroscopy (FTIR) analysis showed that no oxidation reaction occurred in the high-temperature processing and that stronger interactions between the components of the blends occurred in the polyamide's functional groups. The x-ray diffraction (XRD) analysis showed that the crystallinity degree of the blends and the mean crystallite sizes decreased with the addition of PA12 for both blends. The HDPE's lattice parameters were consistent with the values in the literature, whereas for the PA12, it was not possible to fit its lattice parameters. The rheology analysis evaluated the relationship between the shear stress and viscosity and found that the HDPE/PA 75/25 blend was the most pseudoplastic, presenting the best processability under high shear rates.  相似文献   

5.
Yu  Wen-jin  Xu  Shu-man  Zhang  Li  Fu  Qiang 《高分子科学》2017,35(9):1132-1142
In this work,completely immiscible polyethylene/polyamidel2 (PE/PA12) blends were prepared by high shear extruder.The morphology and mechanical properties of the blends were investigated as a function of rotation speed.It wasfound that the high shear processing is an effective method to improve the dispersion of the PAl2 phase in PE matrix whenPAl2 contents are 5 wt% and 10 wt%,and the dispersed phase particle size is reduced with the increase of rotation speed from 100 r/min to 500 r/min.However,with further increase of PAl2 content to 20 wt%,high shear processing has no effect on the phase morphology of the blends.Accordingly,a largely increased elongation at break and impact strength are observed for PE/PA12/95/5 and PE/PA12/90/10 blends obtained at high rotation speeds but no effect on the property of PE/PA12/80/20.Annealing experiment demonstrated that the obtained phase morphology is not stable thus compatibilizer should be introduced in the future work.This work could provide a guideline for the application of high shear processing in the preparation of polymer blends with huge polarity difference.  相似文献   

6.
The effect of a small admixture of high‐density polyethylene (HDPE) with a high or low viscosity to polystyrene/polyamide (PS/PA) blends of various compositions was studied. PS/PA blends with composition near 50/50 form sheet‐like or fiber‐like morphology at mixing that passes to the cocontinuous structure during compression molding. Ternary PS/PA/HDPE blends with PS/PA ratio about 50/50 show similar behavior. Generally, neither continuity nor shape of PS and PA phases was changed qualitatively by the addition of a small amount of HDPE. In agreement with existing rules for ternary blends, HDPE particles prefer a contact with PS phase to PA phase. On the other hand, none of these rules explains why a number of small HDPE subinclusions were dispersed into PS particles instead of HDPE‐PS core‐shell structure with a lower Gibbs free energy. Quantitative evaluation of the size of PA particles in blends with PS matrix showed that the previously proposed rule stating, that the addition of a small amount of a third immiscible component leads to a strong decrease in the size of dispersed particles, was not valid for the blends studied in this work. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2158–2170, 2009  相似文献   

7.
Blends of ethylene‐glycidyl methacrylate copolymer (PE‐GMA) and polyamide 6 (PA6) were prepared in a corotating twin screw extruder. Two processing temperatures were used in order to disperse PA6 in two forms: at high temperature in the molten state in molted PE‐GMA Matrix (emulsion type mixture) and at lower temperature as fillers in molted PEGMA matrix (suspension type mixture). Processed blends were analyzed by scanning electron microscopy and dynamic mechanical experiments to probe the reactivity in the extruder and the compatibilization phenomena. The dependence of the morphology and the rheological properties of PE‐GMA/PA6 blends on blend composition and screw rotational speed was also investigated and is discussed in the paper. The results show that dispersion of the two polymers in the molten state leads to a higher level of interfacial reaction. They also show that whatever the screw rotational speed and the temperature of extrusion are, the rate of interfacial reaction in PE‐GMA/PA6 blends is higher for 50/50 PE‐GMA/PA blends than for 70/30 PE‐GMA/PA blends. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Poly(butylene terephthalate) (PBT) and a sample of polyamide have been melt processed in the presence of two new phosphazene compounds, namely 2,2-dichloro-4,4,6,6-bis[spyro(2′,2″-dioxy-1′,1″-biphenyl)]cyclotriphosphazene (2Cl-CP) and 2,2-bis(2-methoxy-4-methyleneoxy-phenoxy)-4,4,6,6-bis[spyro(2′,2″-dioxy-1′,1″-biphenyl)]cyclophosphazene (CP-2EPOX).The blends were prepared by using polyamide 6 (PA6) and polyamide 6,6 (PA66) in 25/75 and 75/25 w/w compositions by using a co-rotating twin-screw extruder.The materials have been completely characterized from a mechanical, rheological, and morphological point of view. The results indicate that the additives used cause an increase of the rupture properties and of the viscosity, especially in the PA6 rich blends containing CP-2EPOX. This result can be not only attributed to a chain extension effect on the PA phase but also to in situ formation of PA/PBT copolymers promoted by the presence of the CP compound as confirmed by NMR and MALDI-TOF analyses. The compatibilization effect fades in blends containing PA66, probably due to a thermal deactivation of the additives at higher temperature required to process this polymer.  相似文献   

9.
Summary: The crystalline structure and phase morphology of linear, branched polyethylenes and their blends during crystallization and subsequent melting were investigated, using a combination of differential scanning calorimetry (DSC), and synchrotron small angle X-ray scattering (SAXS). A linear polyethylene (PE1) with weight-average molecular weight (Mw) of 114 000 g/mol, and two branched polyethylene copolymers, containing 4.8 mol% (PE4) and 15.3 mol% (PE10) hexane, with molecular weights of 93 000 g/mol and 46 000 g/mol were used as pure samples. Two blends, PE1-4 and PE1-10, each with a weight ratio of 50/50, were prepared by solution blending. Our results indicate that in PE4 a phase separation within the branched component itself occurred, forming a broad distribution of lamellar thicknesses during the crystallization process. PE10 on the other hand did hardly crystallize because of the high degree of branching. Co-crystallization of both components took place in blend PE1-4 and liquid-liquid phase separation occurred in the melt of PE1-10. Morphological parameters were determined by using Bragg's law and the correlation function, respectively. The detected semicrystalline morphology can be well described by the lamellar insertion mode where thin lamellae develop between thicker primary lamellae. During subsequent heating, lamellae melted in the reversed sequence of their formation. The evolution of the structural parameters as a function of temperature revealed that surface melting began at first, and then the complete melting of stacks occurred until the final melting temperature was reached.  相似文献   

10.
刚性粒子增韧尼龙1010体系的研究   总被引:3,自引:0,他引:3  
采用扫描电镜和动态力学等研究了在磺化聚苯乙烯(HSPS)作用下,尼龙1010(PA1010)/聚苯乙烯(PS)共混物的形态及相容性。结果表明,HSPS的加入显著改善了PS与PA1010的相容性,加强了界面粘结,使共混物缺口冲击明显提高,实现了PS增韧PA1010的目标。偏光显微竟结盟表明,HSPS的加入对共混物中PA1010的结晶形态有明显影响,使PA1010球晶细化且不完善。  相似文献   

11.
The impact of small amounts of organomodified clay (OMMT) on the photo-degradation behaviour of two blends obtained by mixing either low-density polyethylene (LDPE) or high density polyethylene (HDPE) with polyamide 6 (PA6) (LDPE/PA6 and HDPE/PA6 75/25 wt-%) was studied. The complex photo-degradation behaviour was followed by monitoring the main physical-mechanical properties of the blends. In particular, mechanical and spectroscopic tests were performed in conditions of accelerated artificial aging. An accurate mechanical and morphological characterization was previously carried out. The presence of the OMMT promotes the unexpected formation of a co-continuous morphology for the HDPE/PA6 blend without significantly improving the interfacial adhesion. Differently, the OMMT-filled LDPE/PA6 blend exhibits a finely distributed morphology, and some apparent improvement of the interfacial adhesion was noticed. Probably due to these differences in microstructure, a different impact of the nanoparticles on the photo-resistance behaviours was observed for the two families of samples. In particular, the HDPE-based nanocomposite blend exhibits an improved photo-resistance, while the opposite occurs for the LDPE-based system.  相似文献   

12.
In this research,the morphologies,isothermal-crystallization kinetics,and spherulite growth of aliphatic polyketone/polyamide-6 blends were studied.A single glass-transition temperature (Tg) was determined,and the composition dependence of Tg for these blends was well described by the Kwei equation.The strong intermolecular interaction between the two polymer components was confirmed by melting-point depression.The isothermal-crystallization kinetics were analyzed on the basis of the Avrami approach.A linear increase in the radii of the spherulites with time was observed for all compositions.All the spherulites continued to grow at nearly identical growth rates.With increasing polyamide-6 content,the size of the spherulites in the polyketone/polyamide-6 blends gradually decreased,and the number of spherulites in the blends increased.  相似文献   

13.
Syndiotactic polystyrene (sPS) and polyamide-6 (PA6) are immiscible and incompatible and have been recognized. In this study, sulfonated syndiotactic polystyrene (SsPS-H) is employed as compatibilizer in the blend of sPS/PA6. During melt blending, the sulfonic acid groups of the SsPS-H can interact strongly with the amine end-groups of PA6 through acid-base interaction. In addition, SsPS-H is miscible with sPS when SsPS-H content is less than 20 wt.%. Therefore, the addition of SsPS-H to sPS/PA6 blends reduces the dispersed phase size and improves the adhesion between the phases. The glass transition temperatures of the PA6 component in the compatibilized blends shift progressively towards higher temperature with the content of SsPS-H-12 increase, indicating enhanced compatibility. On the other hand, the progressive lowering of the melting point and crystallization temperatures of PA6 in the blends with increasing SsPS-H contents compared to the incompatibilized blend, provide some insight into the level of interaction between the PA6 and SsPS-H. The compatibilized blends have significantly higher impact strength than the blends without SsPS-H. The best improvement in the impact strength of the blends was achieved with the content of the SsPS-H (11.9 mol%) about 5 wt.%.  相似文献   

14.
Summary: In this study, we investigate the influence of reactive compatibilization on the rheological properties of polyamide 6/styrene-acrylonitrile (PA 6/SAN) blends in the melt. Linear viscoelastic shear oscillations, simple elongation to a large stretch ratio and subsequent recovery experiments were performed. The morphology of the blends was examined by atomic force microscopy. We prepared three PA 6/SAN blends with different composition ratios of PA 6 and SAN (70/30, 50/50, 30/70) and a constant concentration of the reactive agent. Our experiments revealed that reactive compatibilization significantly increases the complex modulus of PA 6/SAN blends at low frequencies. In particular, the data of the PA 6/SAN 50/50 blend and the PA 6/SAN 30/70 blend indicated that an elastic network between neighbouring PA 6 domains was formed. In simple elongation, the transient elongational viscosity of the blends exceeded the values of the single components. In recovery, the recovered stretch of all blends was larger than the recovered stretch of the pure components. The differences of the blend morphology and of the linear viscoelastic behaviour were qualitatively explained by the asymmetric properties of the reactively compatibilized interface.  相似文献   

15.
Rechargeable battery separators containing controlled pores were fabricated via the thermally-induced phase separation (TIPS) process. Based on the idea that pores could be manipulated by controlling the liquid–liquid phase separation temperature in the TIPS process, phase boundaries of the polymer–diluent systems were controlled by using diluent mixtures. Phase behaviors of the polymer/diluent/diluent ternary blends consisting of polyethylene (PE) as polymer, and soybean oil (SBO) and dioctyl phthalate (DOP) as diluents were explored. PE/SBO and PE/DOP binary blends, and PE/SOB/DOP ternary blends exhibited typical upper critical solution temperature (UCST) type phase behaviors, and the phase separation temperatures of the PE/SBO blends were higher than those of the PE/DOP blends. When the mixing ratio of the polymer and diluent-mixture was fixed, the phase separation temperature of the PE/SBO/DOP blend initially increased with increasing SBO content in the diluent-mixture passing through a maximum centered at about 80 wt% SBO and decreased beyond this point. Furthermore, the phase separation temperature of the PE/diluent-mixture blend was always higher than that of the PE/SBO blend when the diluent-mixture contained more than or equal to 50 wt% SBO. To understand the observed phase behavior of the blends, thermodynamic analyses based on the lattice-fluid theory were performed. Larger pore membranes were fabricated from the blend when higher phase separation temperatures of the blend were exhibited.  相似文献   

16.
Polyamide 66 (PA66)/high density polyethylene (HDPE) blends having miscible structure were produced by compatibilization of HDPE grafted with maleic anhydride (HDPE‐g‐MAH). Mechanical and tribological properties of blends in different compositions were tested. It was found that the polymer blends greatly improved the mechanical properties of PA66 and HDPE. Blending HDPE with PA66 significantly decreased the friction coefficient of PA66; the friction coefficients of blends with different compositions were almost the same and approximately equal to that of pure HDPE; the blends with 80 vol % PA66 exhibited the best wear resistance. The transfer films, counterpart surfaces, and wear debris formed during sliding were investigated by Scanning Electron Microscopy (SEM), and Differential Scanning Calorimetry (DSC) analysis was further carried out on wear debris. These investigations indicated that the thermal control of friction model is applicable to PA66/HDPE blend, that is the friction coefficient of blend is governed by the HDPE component, which possesses a lower softening point relative to the PA66 component in this system. The wear mechanism of PA66/HDPE blend transforms from PA66 to HDPE as the HDPE content increases. PA66, as the component with higher softening point, increases the hardness of blend, enhances the ability of blend to form a transfer film on the counterface, and inhibits the formation of larger belt‐like debris of HDPE, at the same time, the presence of self‐lubricating HDPE in the system decreases the friction coefficient and the frictional heat, all of these factors are favorable for the wear resistance of PA66/HDPE blend. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2514–2523, 2005  相似文献   

17.
Dielectric data for low density polyethylene/nylon 6 blends are presented for different compositions.The blends show dielectric values much larger than those of the polyethylene and also a maximum is shown at compositions of about 75% w/w of nylon. These data demonstrate the incompatibility of such blends an allow and understanding of their structure.  相似文献   

18.
新型sPS/PA6/SsPS-H塑料合金的性能和形态结构   总被引:2,自引:1,他引:2  
研究新型sPS PA6 SsPS H塑料合金的力学性能和微观形态结构 .间规聚苯乙烯 (sPS)的磺化产物磺化间规聚苯乙烯 (SsPS H)的加入明显地改善了sPS PA6(聚酰胺 6)二组分合金的力学性能 ,在sPS PA6 SsPS H重量组成为 80 2 0 5时 ,三组分合金的冲击强度最大 ,为 1 5 6kJ m2 ,约为纯sPS冲击强度的 3倍 DMA和SEM结果表明 ,SsPS H对sPS和PA6共混有良好的增容作用 ,它起到了降低合金的微相尺寸和加强相间界面粘结的作用 .此外 ,FTIR结果还表明SsPS H和PA6之间存在特殊相互作用 ,其作用方式是通过SsPS H的磺酸基将其质子转移给PA6酰胺基的氮  相似文献   

19.
张杰  阮杰  闫寿科 《高分子学报》2017,(9):1524-1530
利用电子显微镜结合电子衍射研究了左旋聚乳酸/聚(ε-己内酯)(PLLA/PCL)共混物在取向聚乙烯(PE)基底上的结晶行为.纯PLLA在取向PE基底上能够附生结晶,主要形成分子链相互垂直的片晶结构.PCL在PE基质上也能发生附生结晶,导致两者分子链平行.PLLA/PCL共混物在取向PE基底上结晶的形态结构依赖于共混组成.在PLLA含量大于95 wt%时,PCL不影响PLLA与PE的附生结晶行为.当PCL含量增加至10 wt%时,PLLA在PE上的附生结晶行为受到了一定程度的影响.当PCL含量超过40 wt%时,PLLA在PE上的附生结晶被抑制,取而代之是PCL在PE取向基质上附生结晶,产生两者分子链平行的取向片晶.另外,在PLLA含量在50 wt%~30 wt%之间时,体系产生明显的微相分离,微相分离并不影响PCL与PE的附生结晶,在PCL的富集区仍然发生平行链附生结晶,而PLLA的富集区结构变得模糊.当PLLA含量少于20 wt%时,微相分离不明显,少量PLLA应该分散在PCL片晶间的非晶区.  相似文献   

20.
Milled phenol-formaldehyde glass-fibre scrap (prepreg) was mixed with polypropylene (PP) and polyamide-6 (PA6). The oxidation induction time (OIT) of PP/prepreg composite measured by both chemiluminescence (CL) and Differential Scanning Calorimetry (DSC) was significantly longer than the oxidation induction time of unstabilised base PP. In addition, mechanical testing showed that the prepreg filler stabilised both PP and PA6 towards oxidation during long-term accelerated ageing. Headspace-gas chromatography/mass spectrometry (HS-GC/MS) showed that PP/prepreg composites emit somewhat larger amounts of volatile compounds compared to the reference PP/glass fibre composites, while the amount of volatile components emitted from PA6/prepreg composites was similar to the reference PA6/glass fibre composites. The new prepreg composites could have potential in thermally demanding applications especially if a secondary phosphite stabiliser is added to further increase the oxidative stability through synergy effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号