首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 133 毫秒
1.
The application of the sampling surfaces (SaS) method to piezoelectric laminated composite plates is presented in a companion paper (Kulikov, G.M., Plotnikova, S.V., Three-dimensional exact analysis of piezoelectric laminated plates via sampling surfaces method. International Journal of Solids and Structures 50, http://dx.doi.org/10.1016/j.ijsolstr.2013.02.015). In this paper, we extend the SaS method to shells to solve the static problems of three-dimensional (3D) electroelasticity for cylindrical and spherical piezoelectric laminated shells. For this purpose, we introduce inside the nth layer In not equally spaced SaS parallel to the middle surface of the shell and choose displacements of these surfaces as basic kinematic variables. Such choice of displacements permits, first, the presentation of governing equations of the proposed piezoelectric shell formulation in a very compact form and, second, gives an opportunity to utilize the strain–displacement equations, which precisely represent all rigid-body shell motions in any convected curvilinear coordinate system. It is shown that the developed piezoelectric shell formulation can be applied efficiently to finding of 3D exact solutions for piezoelectric cross-ply and angle-ply shells with a specified accuracy using a sufficient number of SaS, which are located at Chebyshev polynomial nodes and layer interfaces as well.  相似文献   

2.
A paper focuses on implementation of the sampling surfaces (SaS) method for the three-dimensional (3D) exact solutions for functionally graded (FG) piezoelectric laminated shells. According to this method, we introduce inside the nth layer In not equally spaced SaS parallel to the middle surface of the shell and choose displacements and electric potentials of these surfaces as basic shell variables. Such choice of unknowns yields, first, a very compact form of governing equations of the FG piezoelectric shell formulation and, second, allows the use of strain–displacement equations, which exactly represent rigid-body motions of the shell in any convected curvilinear coordinate system. It is worth noting that the SaS are located inside each layer at Chebyshev polynomial nodes that leads to a uniform convergence of the SaS method. As a result, the SaS method can be applied efficiently to 3D exact solutions of electroelasticity for FG piezoelectric cross-ply and angle-ply shells with a specified accuracy by using a sufficient number of SaS.  相似文献   

3.
In the first part (Lebée and Sab, 2010a) of this two-part paper we have presented a new plate theory for out-of-plane loaded thick plates where the static unknowns are those of the Kirchhoff–Love theory (3 in-plane stresses and 3 bending moments), to which six components are added representing the gradient of the bending moment. The new theory, called Bending-Gradient plate theory is an extension to arbitrarily layered plates of the Reissner–Mindlin plate theory which appears as a special case when the plate is homogeneous. Moreover, we demonstrated that, in the general case, the Bending-Gradient model cannot be reduced to a Reissner–Mindlin model. In this paper, the Bending-Gradient theory is applied to laminated plates and its predictions are compared to those of Reissner–Mindlin theory and to full 3D (Pagano, 1969) exact solutions. The main conclusion is that the Bending-Gradient gives good predictions of deflection, shear stress distributions and in-plane displacement distributions in any material configuration. Moreover, under some symmetry conditions, the Bending-Gradient model coincides with the second-order approximation of the exact solution as the slenderness ratio L/h goes to infinity.  相似文献   

4.
A new trigonometric shear deformation theory for isotropic and composite laminated and sandwich plates, is developed. The new displacement field depends on a parameter “m”, whose value is determined so as to give results closest to the 3D elasticity bending solutions. The theory accounts for adequate distribution of the transverse shear strains through the plate thickness and tangential stress-free boundary conditions on the plate boundary surface, thus a shear correction factor is not required. Plate governing equations and boundary conditions are derived by employing the principle of virtual work. The Navier-type exact solutions for static bending analysis are presented for sinusoidally and uniformly distributed loads. The accuracy of the present theory is ascertained by comparing it with various available results in the literature. The results show that the present model performs as good as the Reddy’s and Touratier’s shear deformation theories for analyzing the static behavior of isotropic and composite laminated and sandwich plates.  相似文献   

5.
This research presents a finite element formulation based on four-variable refined plate theory for bending analysis of cross-ply and angle-ply laminated composite plates integrated with a piezoelectric fiber-reinforced composite actuator under electromechanical loading. The four-variable refined plate theory is a simple and efficient higher-order shear deformation theory, which predicts parabolic variation of transverse shear stresses across the plate thickness and satisfies zero traction conditions on the plate free surfaces. The weak form of governing equations is derived using the principle of minimum potential energy, and a 4-node non-conforming rectangular plate element with 8 degrees of freedom per node is introduced for discretizing the domain. Several benchmark problems are solved by the developed MATLAB code and the obtained results are compared with those from exact and other numerical solutions, showing good agreement.  相似文献   

6.
李红云  王清  刘正兴 《力学季刊》2002,23(2):141-147
利用压电材料固有的正,逆压电效应可以对结构变形和振动进行控制。与外加电场与极化方向平行于板厚度的压电材料的拉伸作动机制相比,外加电场与极化方向垂直的压电材料的剪切作动机制可以在作动器内产生较小的应力,从而降低作动器边界产生分层破坏的危险。本文对于压电材料的剪切作动机制进行研究,应用三阶剪切变形理论建立带剪切型压电激励器的智能层合板模型。采用哈密顿原理导出带剪切型压电激励器的层合板的控制方程。采用空间法得到了各种边界条件组合条件下板的解析解。数值算例对一三层板采用高阶和一阶剪切变形理论进行计算,结果表明两种理论所得的变形曲线很相似。但对于厚度剪切型激励器而言,由于激励器是引起板的剪切变形,而高阶剪切变形理论比一阶剪切变形理论能更好地反映结构的剪切应变能,因此高阶剪切变形理论可以提供板变形的更为精确的解。因此,对于厚度剪切型激励器,剪切变形理论的选取对于板变形结果的好坏有重要的作用。  相似文献   

7.
This is the first part of a two-part paper dedicated to a new plate theory for out-of-plane loaded thick plates where the static unknowns are those of the Kirchhoff–Love theory (3 in-plane stresses and 3 bending moments), to which six components are added representing the gradient of the bending moment. The new theory, called the Bending-Gradient plate theory is described in the present paper. It is an extension to arbitrarily layered plates of the Reissner–Mindlin plate theory which appears as a special case of the Bending-Gradient plate theory when the plate is homogeneous. However, we demonstrate also that, in the general case, the Bending-Gradient model cannot be reduced to a Reissner–Mindlin model. In part two (Lebée and Sab, 2011), the Bending-Gradient theory is applied to multilayered plates and its predictions are compared to those of the Reissner–Mindlin theory and to full 3D Pagano’s exact solutions. The main conclusion of the second part is that the Bending-Gradient gives good predictions of both deflection and shear stress distributions in any material configuration. Moreover, under some symmetry conditions, the Bending-Gradient model coincides with the second-order approximation of the exact solution as the slenderness ratio L/h goes to infinity.  相似文献   

8.
Quasicrystals (QCs) are sensitive to the piezoelectric (PE) effect. This paper studies static deformation of a multilayered one-dimensional (1D) hexagonal QC plate with the PE effect. The exact closed-form solutions of the extended displacement and traction for a homogeneous piezoelectric quasicrystal (PQC) plate are derived from an eigensystem. The general solutions for multilayered PQC plates are then obtained using the propagator matrix method when mechanical and electrical loads are applied on the top surface of the plate. Numerical examples for several sandwich plates made up of PQC, PE, and QC materials are provided to show the effect of stacking sequence on phonon, phason, and electric fields under mechanical and electrical loads, which is useful in designing new composites for engineering structures.  相似文献   

9.
有限长压电层合简支板自由振动的三维精确解   总被引:13,自引:2,他引:13  
基于三维弹性理论和压电理论,导出了有限长矩形压电层合简支板的动力学方程及相应的边界条件,给出了一种求解压电层合板自由振动三维精确解的方法;分析了正、逆向压电效应对层合板振动频率的影响.本文所述的方法和结果对于求解其他三维动态问题,验证、比较其他简化模型、有限元计算结果以及工程应用都有指导意义.  相似文献   

10.
An analytical treatment is presented for the propagation of harmonic waves in magneto-electro-elastic multilayered plates, where the general anisotropic and three-phase coupled constitutive equations are used. The state-vector approach is employed to derive the propagator matrix which connects the field variables at the upper interface to those at the lower interface of each layer. The global propagator matrix is obtained by propagating the solution in each layer from the bottom of the layered plate to the top using the continuity conditions of the field variables across the interfaces. From the global propagator matrix, we finally obtain the dispersion relation by imposing the traction-free boundary condition on the top and bottom surfaces of the layered plate. Dispersion curves, modal shapes, and natural frequencies are presented for layered plates made of orthotropic elastic (graphite–epoxy), transversely isotropic PZT-5A, piezoelectric BaTiO3 and magnetostrictive CoFe2O4 materials. While the numerical results show clearly the influence of different stacking sequences as well as material properties on the field response, the general methodology presented in the paper could be useful to the analysis and design of layered composites made of smart piezoelectric and piezomagnetic materials.  相似文献   

11.
现代复合材料层合板具有高强和轻型的突出优点,从而在军工和民用等诸多领域发挥着重要作用。这种板结构的特点是随着纤维走向的不同,层间材料的物理-力学特性发生剧烈变化。沿板厚方向变形的梯度比较陡峭,并在层间结合面处发生强不连续,呈现zig-zag (锯齿状)现象。这导致横向剪应变在板的静态和动态响应中发生重要作用,不计横向变形的经典组合板计算模型CLPT难以适应现代多层板计算分析的需要。考虑横向剪切变形影响的板的计算模型得到重视和发展。需要指出,现有各种考虑剪切变形影响的计算模型虽然有了很大的发展,但在全面和准确性上仍然存在一定的不足,难以适应现代多层组合板横向力和物理性能多变的情况。模型预测的沿板厚方向位移和应力的变化规律难以通过严格的检验。本文提出的以比例边界有限元为基础的正交各向异性板的数值计算模型,同时可适用于各种薄板与厚板的分析,对现代复合材料层合板的分析具有特殊的优越性。所得到的板的位移、正应力和剪应力沿板厚方向的变化,与三维弹性理论的标准解高度吻合。数值算例进一步表明,随着层间纤维走向的变化,板内位移场和应力场沿板厚方向剧烈变化所呈现的锯齿现象均可以精准地进行模拟。据此,本文建议方法对现代板分析的广泛适应性和高度准确性得到了充分论证。  相似文献   

12.
In order to construct a plate theory for a thick transversely compressible sandwich plate with composite laminated face sheets, the authors make simplifying assumptions regarding distribution of transverse strain components in the thickness direction. The in-plane stresses and σyy (Fig. 1) are computed from the constitutive equations, and the improved values of transverse stress components and σzz need to be computed by integration of pointwise equations of motion in a post-process stage of the finite element analysis. The improved values of the transverse strains can also be computed in the post-process stage by substituting the improved transverse stresses into the constitutive relations. A problem of cylindrical bending of a simply supported plate under a uniform load on the upper surface is considered, and comparison is made between the displacements, the in-plane stress and the improved transverse stresses (obtained by integration of the pointwise equations of motion), computed from the plate theory, with the corresponding values of exact elasticity solutions. In this comparison, a good agreement of both solutions is achieved. In the finite element analysis of sandwich plates in cylindrical bending with small thickness-to-length ratios, the shear locking phenomenon does not occur. The model of a sandwich plate in cylindrical bending, presented in this paper, has a wider range of applicability than the models presented in literature so far: it can be applied to the sandwich plates with a wide range of ratios of thickness to the in-plane dimensions, with both thin and thick face sheets (as compared to the thickness of the core) and to the sandwich plates with both transversely rigid and transversely compressible face sheets and cores.  相似文献   

13.
This paper addresses the buckling and post-buckling of laminated composite plates using higher order shear deformation theory associated with Green–Lagrange non-linear strain–displacement relationships. All higher order terms arising from nonlinear strain–displacement relations are included in the formulation. The present plate theory satisfies zero transverse shear strain conditions at the top and bottom surfaces of the plate in von Karman sense. A C0 isoparametric finite element is developed for the present nonlinear model.  相似文献   

14.
李尧臣  亓峰  仲政 《力学学报》2010,42(4):670-681
提出了压电功能梯度矩形板在竖向载荷作用下的近似理论与解析解. 引入了板理论的Kirchhoff假设、Reissner-Mindlin假设和提出的补充假设, 并假设材料常数在板厚方向按指数规律变化. 推导了板在周边简支同时又接地情况下中性层法线转角的解和用Fourier级数表示的电势解. 该解在形式上比精确解简单得多, 进行数值计算时也相当方便与快捷. 计算结果与ANSYS软件用三维实体单元的有限元计算结果进行了比较, 证实了该方法即使在厚板情况下仍然具有很高的精度.   相似文献   

15.
This paper presents a nonlinear model for cross-ply piezoelastic laminated plates containing the damage effect of the intralayer materials and interlaminar interfaces. The model is based on the general six-degrees-of-freedom plate theory, the discontinuity of displacement, and electric potential on the interfaces are depicted by three shape functions, which are formulated according to solutions about three equilibrium equations and conservation of charge. By using the Hamilton variation principle, the three-dimensional nonlinear dynamic equations of piezoelastic laminated plates with damage are presented. Then using the finite difference method and the Newmark scheme, an analytical solution is presented. In numerical examples, the effects of different damage models, damage evolution, amplitude and frequency of electric loads on the nonlinear dynamic response of piezoelectric laminated plate with interfacial imperfections are investigated.  相似文献   

16.
A modified mixed variational principle for piezoelectric materials is established and the state-vector equation of piezoelectric plates is deduced directly from the principle. Then the exact solution of the state-vector equation is simply given, and based on the semi-analytical solution of the state-vector equation, a realistic mathematical model is proposed for static analysis of a hybrid laminate and dynamic analysis of a clamped aluminum plate with piezoelectric patches. Both the plate and patches are considered as two three-dimensional piezoelectric bodies, but the same linear quadrilateral element is used to discretize the plate and patches. This method accounts for the compatibility of generalized displacements and generalized stresses on the interface between the plate and patches, and the transverse shear deformation and the rotary inertia of the plate and patches are also considered in the global algebraic equation system. Meanwhile, there is no restriction on the thickness of plate and patches. The model can be also modified to achieve a semi-analytical solution for the transient responses to dynamic loadings and the vibration control of laminated plate with piezoelectric patches or piezoelectric stiffeners.  相似文献   

17.
基于三维弹性理论和压电理论,导出了含有1-3型压电复合材料层的有限长矩形层合简支板的静力平衡方程和边界条件,给出了该层合板在叉指式电极和外力共同作用下力电耦合特性的三维精确解.数值算例的计算结果与有限元解进行了对比,取得了很好的一致性.研究了压电矩阵各向异性和刚度矩阵各向异性以及电势等因素对其挠曲面扭率最大值的影响.数值结果表明层合板扭率最大值的绝对值随压电矩阵各向异性系数Rd的增大而增大并随刚度矩阵各向异性系数Rc的减小而增加.  相似文献   

18.
In this article, the governing equations of motion of thick laminated transversely isotropic plates are derived based on Reddy’s third-order shear deformation theory. These equations are exactly converted to four uncoupled equations to study the in-plane and out-of-plane free vibrations of thick laminated plates without any usage of approximate methods. Based on the present analytical approach, exact Levy-type solutions are obtained for thick laminated transversely isotropic plates and, for some boundary conditions, the exact characteristic equations hitherto not reported in the literature are given. Also, the in-plane and out-of-plane deformed mode shapes are plotted for different boundary conditions. The present solutions can accurately predict both the in-plane and out-of-plane natural frequencies and mode shapes of thick laminated transversely isotropic plates.  相似文献   

19.
Based on three-dimensional elastic theory of piezoelectric materials, the axisymmetric state space formulation of piezoelectric laminated circular plates is derived. Finite Hankel transforms are used and the boundary variables in free terms are replaced, for two kinds of boundary conditions, to obtain ordinary differential equations with constant coefficients. Regarding the axisymmetric free vibration problem, two exact solutions for two different boundary conditions are found. Discarding piezoelectric effect, the exact solutions for transversely isotropic circular laminates are also obtained through the same procedure. Numerical examples are given and compared with those of Finite Element Method (FEM) .  相似文献   

20.
Exact deflection models of beams with n actuators of shear piezoelectric are developed analytically. To formulate the models, the first-order and higher-order beam theories are used. The exact solutions are obtained with the aid of the state-space approach and Jordan canonical form. A case study is presented to evaluate the performance of the authors’ previously reported models. Through a demonstrative example, a comparative study of the first-order and higher-order beams with two shear piezoelectric actuators is attained. It is shown that the first-order beam cannot predict the beam behavior when compared with the results of the higher-order beam. Further applications of the solutions are presented by investigating the effects of actuators lengths and locations on the deflected shapes of beams with two piezoelectric actuators. Some interesting deflection curves are presented. For example, the deflection curve of a H–H beam resembles saw teeth that rotate clockwise about the central location with the increase of actuators lengths. The presented exact solutions can be used in the design process to obtain detailed deformation information of beams with various boundary conditions. Moreover, the presented analysis can be readily used to perform precise shape control of beams with n actuators of shear piezoelectric.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号