首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 83 毫秒
1.
The partial ionization cross section for the formation of SF(3) (+) fragment ions following electron impact on SF(6) is known to have a pronounced structure in the cross section curve slightly above 40 eV. We used the mass-analyzed ion kinetic energy (MIKE) scan technique to demonstrate the presence of a channel contributing to the SF(3) (+) partial ionization cross section that we attribute to the Coulomb explosion of doubly charged metastable SF(4) (2+) ions into two singly charged ions SF(3) (+) and F(+), with a threshold energy of about 45.5 eV. Thus the observed unusual shape of the SF(3) (+) partial ionization cross section is the result of two contributions, (i) the direct formation of SF(3) (+) fragment ions via dissociative ionization of SF(6) with a threshold energy of 22 eV and (ii) the Coulomb explosion of metastable SF(4) (2+) ions with a threshold energy of about 45.5 eV. A detailed analysis of the MIKE spectrum reveals an average kinetic energy release of about 5 eV in the Coulomb explosion of the SF(4) (2+) ions with evidence of a second channel corresponding to an average kinetic energy release of about 1.1 eV.  相似文献   

2.
Delayed asymmetric Coulomb fission in size-selected molecular dication clusters has been recorded for the first time. Observations on (NH(3))(n)(2+) clusters show that fragmentation accompanied by charge separation can occur on a microsecond time scale, exhibits considerable asymmetry, and involves a kinetic energy release of ~0.9 eV. The fission process has been modeled by representing the fragments as charged dielectric spheres and the calculated maximum in the electrostatic interaction energy between the fragments gives a good account of the measured kinetic energy release. A simple kinetic model shows that instrumental factors may contribute to the observation of asymmetric fragmentation.  相似文献   

3.
The fragmentation of the C(2)H(2)(2+) dication, formed upon inner shell ionization and the subsequent Auger decay, has been studied by means of Auger electron-ion and Auger electron-ion-ion coincidence spectroscopy at four different kinetic energies of the Auger electron. The experimental investigation of three fragmentation paths leading to the C(2)H(+)/H(+), C(2)(+)/H(+) and C(+)/H(+) pairs has been complemented by theoretical calculations of the Potential Energy Surfaces (PES). It is found that when the amount of internal energy of the dication increases this is mainly transferred into the kinetic energy of the fragments of the second step of the dissociation.  相似文献   

4.
The singlet potential energy surface for the dissociation of benzene dication has been explored, and its three major dissociation channels have been studied: C6H6(2+) --> C3H3(+) + C3H3(+), C4H3(+) + C2H3(+), and C5H3(+) + CH3(+). The calculated energetics suggest that the products will be formed with considerable translational energy because of the Coulomb repulsion between the charged fragments. The calculated energy release in the three channels shows a qualitative agreement with the experimentally observed kinetic energy release. The formation of certain intermediates is found to be common to the three dissociation channels.  相似文献   

5.
The visualization of ultrafast isomerization of deuterated acetylene dication (C(2)D(2)(2+)) is demonstrated by time-resolved Coulomb explosion imaging with sub-10 fs intense laser pulses (9 fs, 0.13 PW cm(-2), 800 nm). The Coulomb explosion imaging monitoring the three-body explosion process, C(2)D(2)(3+)→ D(+) + C(+) + CD(+), as a function of the delay between the pump and probe pulses revealed that the migration of a deuterium atom proceeds in a recurrent manner; One of the deuterium atoms first shifts from one carbon site to the other in a short timescale (~90 fs), and then migrates back to the original carbon site by 280 fs, in competition with the molecular dissociation. Correlated motion of the two deuterium atoms associated with the hydrogen migration and structural deformation to non-planar geometry are identified by the time-resolved four-body Coulomb explosion imaging, C(2)D(2)(4+)→ D(+) + C(+) + C(+) + D(+).  相似文献   

6.
Pure, neutral formic acid (HCOOH)n+1 clusters and mixed (HCOOH)(H2O) clusters are investigated employing time of flight mass spectroscopy and single photon ionization at 26.5 eV using a very compact, capillary discharge, soft x-ray laser. During the ionization process, neutral clusters suffer little fragmentation because almost all excess energy above the vertical ionization energy is taken away by the photoelectron, leaving only a small part of the photon energy deposited into the (HCOOH)n+1+ cluster. The vertical ionization energy minus the adiabatic ionization energy is enough excess energy in the clusters to surmount the proton transfer energy barrier and induce the reaction (HCOOH)n+1+-->(HCOOH)nH+ +HCOO making the protonated (HCOOH)nH+ series dominant in all data obtained. The distribution of pure (HCOOH)nH+ clusters is dependent on experimental conditions. Under certain conditions, a magic number is found at n=5. Metastable dissociation rate constants of (HCOOH)nH+ are measured in the range (0.1-0.8)x10(4) s(-1) for cluster sizes 4相似文献   

7.
The two-body dissociation reactions of the dication, C(2)H(2)(2+), produced by 39.0 eV double photoionization of acetylene molecules, have been studied by coupling photoelectron-photoion-photoion coincidence and ion imaging techniques. The results provide the kinetic energy and angular distributions of product ions. The analysis of the results indicates that the dissociation leading to C(2)H(+)+H(+) products occurs through a metastable dication with a lifetime of 108±22 ns, and a kinetic energy release (KER) distribution exhibiting a maximum at ~4.3 eV with a full width at half maximum (FWHM) of about 60%. The reaction leading to CH(2)(+)+C(+) occurs in a time shorter than the typical rotational period of the acetylene molecules (of the order of 10(-12) s). The KER distribution of product ions for this reaction, exhibits a maximum at ~4.5 eV with a FWHM of about 28%. The symmetric dissociation, leading to CH(+)+CH(+), exhibits a KER distribution with a maximum at ~5.2 eV with a FWHM of 44%. For the first two reactions the angular distributions of ion products also indicate that the double photoionization of acetylene occurs when the neutral molecule is mainly oriented perpendicularly to the light polarization vector.  相似文献   

8.
The ionization-dissociation of methyl iodide in intense laser field has been studied using a reflection time-of-flight mass spectrometry (RTOF-MS), at a laser intensity of < or =6.6x10(14) W/cm(2), lambda=798 nm, and a pulse width of 180 fs. With the high resolution of RTOF-MS, the fragment ions with the same M/z but from different dissociation channels are resolved in the mass spectra, and the kinetic energy releases (KERs) of the fragment ions such as I(q+) (q=1-6), CH(m) (+) (m=0-3), C(2+), and C(3+) are measured. It is found that the KERs of the fragment ions are independent of the laser intensity. The fragments CH(3) (+) and I(+) with very low KERs (<1 eV for CH(3) (+) and <0.07 eV for I(+)) are assigned to be produced by the multiphoton dissociation of CH(3)I(+). For the fragments CH(3) (+) and I(+) from CH(3)I(2+), they are produced by the Coulomb explosion of CH(3)I(2+) with the interaction from the covalent force of the remaining valence electrons. The split of the KER of the fragments produced from CH(3)I(2+) dissociation is observed experimentally and explained with the energy split of I(+)((3)P(2)) and I(+)((3)P(0,1)). The dissociation CH(3)I(3+)-->CH(3) (+)+I(2+) is caused by Coulomb explosion. The valid charge distance R(c) between I(2+) and CH(3) (+), at which enhanced ionization of methyl iodide occurs, is obtained to be 3.7 A by the measurements of the KERs of the fragments CH(3) (+) and I(2+). For the CH(3)I(n+) (n> or =3), the KERs of the fragment ions CH(3) (p+) and I(q+) are attributed to the Coulomb repulsion between CH(3) (p+) and I(q+) from R(c) approximately 3.7 A. The dissociation of the fragment CH(3) (+) is also discussed. By the enhanced ionization mechanism and using the measured KER of I(q+), all the possible Coulomb explosion channels are identified. By comparing the abundance of fragment ions in mass spectrum, it is found that the asymmetric dissociation channels with more charges on iodine, q>p, are the dominant channels.  相似文献   

9.
作为便携式电子设备的动力源,直接甲酸燃料电池(DFAFC)具有燃料跨界范围小、电动势大、甲酸无毒、低温下功率密度大等优点,因而引起了人们的极大兴趣.DFAFC商业化的主要挑战之一是阳极电催化剂材料的高成本和低CO耐受性.阳极通常需要高负载的贵金属电催化剂(Pt或Pd)氧化甲酸(HCOOH)以获得所需的电能.完全电氧化甲酸在Pt和Pd表面上会产生强吸附的CO,从而降低了Pt或Pd催化剂的活性.Pt和Pd储量少且价格昂贵,减少Pt和Pd含量且保持催化性能的燃料电池催化剂一直是研究者的奋斗目标.本文用周期性密度泛函理论(DFT)系统地研究了WC负载的单分子层Pd(Pd/WC(0001))催化剂对甲酸的分解机理,这可为所需的反应路径设计、筛选催化剂提供指导.Trans-HCOOH通过C-H,O-H,C-O键的活化发生分解.关于吸附,确定了可能反应中间体的最稳定吸附构型.trans-HCOOH,HCOO,mHCOO,cis-COOH,trans-COOH,CO,H2O,OH和H的吸附过程是化学吸附,而cis-HCOOH和CO2与Pd/WC(0001)表面的相互作用较弱,是物理吸附.此外,提出了trans-HCOOH分解的不同途径来探索分解机理.trans-HCOOH中O-H,C-H和C-O键的活化能垒分别为0.61,0.77和1.05 eV,O-H键断裂的能垒最小,则trans-HCOOH优先通过O-H键断裂生成HCOO.双齿HCOO是HCOOH分解的主要中间体,它可以转变为单齿HCOO,这条路线生成CO2的能垒比双齿HCOO的低0.04 eV.CO2是HCOO主要解离产物,这一步是总反应的决速步骤.对于cis-COOH和trans-COOH,CO是其主要解离产物.此外,trans-HCOOH也能直接生成CO,但克服的能垒较大.在Pd/WC(0001)表面上分解trans-HCOOH的最有利途径是HCOOH→HCOO→CO2,其中HCOO脱氢形成CO2的步骤是速率决定步骤.本文提供了HCOOH在Pd/WC(0001)表面上分解的活性中间体、能垒和机理的推测,CO形成主要是通过cis-COOH、trans-COOH及HCO的分解,CO2的形成主要是通过HCOO的分解,CO2占主导.该结论与Pd(111)面上甲酸分解结果一致,说明WC作为Pd载体没有改变Pd对甲酸的催化性能,但降低了Pd的使用量.综上,本文阐明了WC负载单分子层Pd催化剂上甲酸催化分解机理,得出甲酸分解的最佳反应路径,为直接甲酸燃料电池设计低贵金属含量、高活性的负载型Pd催化剂提供了理论指导;可用于预测不同载体负载Pd催化剂的性能,大大减少实验成本,以验证提出的实验假设.  相似文献   

10.
Photoionization and photofragmentation studies of formic acid (HCOOH) are performed for the valence shell electron ionization process. The total and partial ion yield of gaseous HCOOH were collected as a function of photon energy in the ultraviolet region, between 11.12 and 19.57 eV. Measurements of the total and partial ion yield of gaseous formic acid molecule are performed with a time-of-flight mass spectrometer at the Synchrotron Light Brazilian Laboratory. Density functional theory and time dependent density functional theory are employed to calculate the ground and excited electronic state energies of neutral and ionic formic acid as well as their fragments and normal vibration modes. The ionization potential energies, the stability of electronic excited states of HCOOH(+), and the energies of opening fragmentation channels are estimated from theoretical-experimental analysis. Additionally, the main formic acid photofragmentation pathways by exposition of photons within that energy range are determined experimentally. These produced ions primarily have the following mass/charge ratios: 46 (HCOOH(+)), 45 (COOH(+)), 29 (HCO(+)), and 18 (H(2)O(+)).  相似文献   

11.
Electrospray ionization and tandem mass spectrometry experiments have been used to study the fragmentation and electron-ion interactions of doubly charged zwitterionic clusters, [M(15) + 2H](2+) (where M = Glycine Betaine (GB), (CH(3))(3)N(+)CH(2)CO(2)(-), and Dimethylsulfonioacetate (DMSA), (CH(3))(2)S(+)CH(2)CO(2)(-)) which are close to the stability limit, i.e., the Coulomb repulsion of the charge within the cluster competes with attractive forces. The intercluster chemistry was studied using collision-induced dissociation (CID) and electron-induced dissociation (EID) in which the energy of the electrons has been varied from >0 to 30 eV. Experimental results suggest that the zwitterionic binding energy in the clusters follow the order GB > DMSA, which is consistent with theoretical calculations that highlight that the lower dipole moment of DMSA leads to a binding energy of DMSA that is 0.86 times smaller than that for GB. Multiply protonated clusters of both GB and DMSA dissociate through Coulomb explosion, which is in competition with neutral evaporation for DMSA. Electronic excitation of the cluster under EID conditions at higher electron energies >12 eV can lead to new intercluster reactions associated with bond cleavages where differences between the sulfur and nitrogen betaines are minor.  相似文献   

12.
The authors investigated Coulomb explosions of ethynylbenzenes under intense femtosecond laser fields. Deuteration on the edge of the triple bond gave information about specific fragment emissions and the contribution of hydrogen migration. Some fragments not resulting from migration were emitted in the direction of laser polarization. These were ethynyl fragment ions (D(+), CD(+), C(2)D(+), and C(3)D(+)). Although two bonds have to be cleaved to produce C(3)D(+), the rigid character of the triple bond was maintained in the Coulomb explosion process. In contrast, fragment ions, which are formed after single or double hydrogen migration, showed isotropic emissions with distinct kinetic energies. The character of the substituents has been found to hold even under strong laser light fields where violent fragmentation took place. The ethynyl parts were emitted like bullets from the molecular frame of ethynylbenzene despite the explosion into pieces of the main body of benzene ring.  相似文献   

13.
Photoionization cross sections for the production of the doubly charged ion N2+ from N2 have been measured by means of synchrotron radiation in the photon energy range from 50 to 110 eV. The appearance energy for N2+ has been determined as 55.2+/-0.2 eV, i.e., about 1.3 eV higher than the spectroscopic dissociation limit leading to the charge asymmetric dissociation channel N2+(2P)+N(4S) at 53.9 eV. The onset of a second threshold at 59.9+/-0.2 eV is detected and the energy dependence of photoion intensities near the threshold regions is interpreted in terms of the Wannier theory. The production of the N2+ dication is discussed in terms of direct and indirect mechanisms for dissociative charge asymmetric photoionization and by comparison with the potential energy curves of the intermediate N(2)2+ dication. Experimental evidences for the opening of the Coulomb explosion channel N2++N+ at high photon energies are provided by measuring the kinetic energy release spectra of N2+ fragments at selected photon energies.  相似文献   

14.
The unimolecular chemistry of protonated formic acid, [HCOOH]H(+), has been investigated by analyzing the fragmentation of metastable ions (MI) during flight in a sector mass spectrometer, and by proton transfer to formic acid in a Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometer. High level ab initio calculations have been used to model the relevant parts of the potential energy surface (PES). In addition, ab initio direct dynamics calculations have been conducted, tracing out 60 different reaction trajectories. The only stable isomer in the mass spectrometric experiments is HC(OH)(2)(+), which is the precursor to both observed ionic products, HCO(+) and H(3)O(+), via the same saddle point of the potential energy surface. The detailed motion of the dissociating molecule during passage of the post-transition state region of the PES therefore determines which product ion is formed. After passing the TS a transient HC(O)OH(2)(+) molecule is first formed. High total energy increases the probability that the nascent water molecule will have sufficient speed to escape the HCO(+) moiety. Otherwise, typically at low energies, the two units recombine, upon which intra-complex proton transfer is very likely. Eventually, this will give the more stable H(3)O(+).  相似文献   

15.
Desorption of C 60 (+) and its dimer cation was investigated on irradiation with nonresonant femtosecond laser pulses at 1.4 mum. Ionization of solid C 60 revealed strikingly different features, such as the absence of multiply charged molecular ions, the emission of C (+) at low laser intensity, C 2 attachments, delayed ionization, and dimer cation formation, as compared with the gas phase experiments. The large kinetic energy distribution of ions found in this study indicated that the desorption process was mainly driven by an electrostatic mechanism rather than by thermal, photochemical, or volume expansion mechanisms. Singly charged C 60 emission by a Coulomb explosion due to the high density of C 60 (+) is suggested.  相似文献   

16.
The formation and fragmentation of the molecular dication C(7)H(8)(2+) from cycloheptatriene (CHT) and the bimolecular reactivities of C(7)H(8)(2+) and C(7)H(6)(2+) are studied using multipole-based tandem mass spectrometers with either electron ionization or photoionization using synchrotron radiation. From the photoionization studies, an apparent double-ionization energy of CHT of (22.67 ± 0.05) eV is derived, and the appearance energy of the most abundant fragment ion C(7)H(6)(2+), formed via H(2) elimination, is determined as (23.62 ± 0.07) eV. Analysis of both the experimental data as well as results of theoretical calculations strongly indicate, however, that an adiabatic transition to the dication state is not possible upon photoionization of neutral CHT and the experimental value is just considered as an upper bound. Instead, an analysis via two different Born-Haber cycles suggests (2)IE(CHT) = (21.6 ± 0.2) eV. Further, the bimolecular reactivities of the C(7)H(n)(2+) dications (n = 6, 8), generated via double ionization of CHT as a precursor, with xenon as well as nitrogen lead, inter alia, to the formation of the organo-xenon dication C(7)H(6)Xe(2+) and the corresponding nitrogen adduct C(7)H(6)N(2)(2+).  相似文献   

17.
The velocity distributions of the fragments produced by dissociative photoionization of C(70) have been measured at several photon energies in the extreme UV region, by using a flight-time resolved velocity map imaging (VMI) technique combined with a high-temperature molecular beam and synchrotron radiation. Average kinetic energy release was estimated for the six reaction steps of consecutive C(2) emission, starting from C(70)(2+) → C(68)(2+) + C(2) to C(60)(2+)→ C(58)(2+) + C(2). The total kinetic energy generated in each step shows a general tendency to increase with increasing hν, except for the first and fifth steps. This propensity reflects statistical redistributions of the excess energy in the transition states for the above fragmentation mechanism. Analysis based on the finite-heat-bath theory predicts the detectable minimum cluster sizes at the end of the C(2)-emission decay chain. They accord well with the minimum sizes of the observed ions, if the excess energy in the primary C(70)(2+) is assumed to be smaller by ~15 eV than the maximum available energy. The present VMI experiments reveal remarkably small kinetic energy release in the fifth step, in contradiction to theoretical predictions, which suggests involvement of other fragmentation mechanisms in the formation of C(60)(2+).  相似文献   

18.
The interatomic Coulombic decay (ICD) in the Ne dimer is discussed in view of the recent experimental results. The ICD electron spectrum and the kinetic energy release of the Ne+ fragments resulting after Coulomb explosion of Ne2 (2+) are computed and compared to the measured ones. A very good agreement is found, confirming the dynamics predicted for this decay mechanism. The effect of the temperature on the electron spectrum is briefly investigated.  相似文献   

19.
The gas-phase reactions between Ca(2+) and glycine ([Ca(gly)](2+)) have been investigated through the use of mass spectrometry techniques and B3-LYP/cc-pWCVTZ density functional theory computations. The major peaks observed in the electrospray MS/MS spectrum of [Ca(gly)](2+) correspond to the formation of the [Ca,C,O(2),H](+), NH(2)CH(2) (+), CaOH(+), and NH(2)CH(2)CO(+) fragment ions, which are produced in Coulomb explosion processes. The computed potential energy surface (PES) shows that not only are these species the most stable product ions from a thermodynamic point of view, but they may be produced with barriers lower than for competing processes. Carbon monoxide is a secondary product, derived from the unimolecular decomposition of some of the primary ions formed in the Coulomb explosions. In contrast to what is found for the reactions of Ca(2+) with urea ([Ca(urea)](2+)), minimal unimolecular losses of neutral fragments are observed for the gas-phase fragmentation processes of [Ca(gly)](2+), which is readily explained in terms of the topological differences between their respective PESs.  相似文献   

20.
We investigated a formation channel of triatomic molecular hydrogen ions from ethane dication induced by irradiation of intense laser fields (800 nm, 100 fs, ~1 × 10(14) W∕cm(2)) by using time of flight mass spectrometry. Hydrogen ion and molecular hydrogen ion (H,D)(n)(+) (n = 1-3) ejected from ethane dications, produced by double ionization of three types of samples, CH(3)CH(3), CD(3)CD(3), and CH(3)CD(3), were measured. All fragments were found to comprise components with a kinetic energy of ~3.5 eV originating from a two-body Coulomb explosion of ethane dications. Based on the signal intensities and the anisotropy of the ejection direction with respect to the laser polarization direction, the branching ratios, H(+):D(+) = 66:34, H(2)(+):HD(+):D(2)(+) = 63:6:31, and H(3)(+):H(2)D(+):HD(2)(+):D(3)(+) = 26:31:34:9 for the decomposition of C(2)H(3)D(3)(2+), were determined. The ratio of hydrogen molecules, H(2):HD:D(2) = 31:48:21, was also estimated from the signal intensities of the counter ion C(2)(H,D)(4)(2+). The similarity in the extent of H∕D mixture in (H,D)(3)(+) with that of (H,D)(2) suggests that these two dissociation channels have a common precursor with the C(2)H(4)(2+)...H(2) complex structure, as proposed theoretically in the case of H(3)(+) ejection from allene dication [A. M. Mebel and A. D. Bandrauk, J. Chem. Phys. 129, 224311 (2008)]. In contrast, the (H,D)(2)(+) ejection path with a lower extent of H∕D mixture and a large anisotropy is expected to proceed essentially via a different path with a much rapid decomposition rate. For the Coulomb explosion path of C-C bond breaking, the yield ratios of two channels, CH(3)CD(3)(2+)→ CH(3)(+) + CD(3)(+) and CH(2)D(+) + CHD(2)(+), were 81:19 and 92:8 for the perpendicular and parallel directions, respectively. This indicates that the process occurs at a rapid rate, which is comparable to hydrogen migration through the C-C bond, resulting in smaller anisotropy for the latter channel that needs H∕D exchange.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号