首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The chemisorption of CO on a sputtered and annealed polycrystalline Pt surface has been examined using ion scattering spectroscopy (ISS) and temperature programmed desorption (TPD). Data obtained from an isotopic TPD experiment indicate that adsorption is molecular with no detectable CO dissociation. ISS data demonstrate that the CO bonds to the Pt through the C with the O pointing away from the surface and that about 80% of the Pt surface is covered at saturation based on the relative sizes of the ISS Pt peak heights obtained from the clean and CO-saturated surfaces. Coverage versus exposure plots have been determined from both the ISS and TPD data, and the agreement is generally good. The sticking coefficient is close to 1 up to =0.5 and than falls rapidly with increasing exposure to the saturation exposure of 90 L. The Kisliuk adsorption model, which assumes adsorption at a single type of site, is able to provide a good fit of the ISS uptake data but is not as successful in fitting the TPD uptake data.  相似文献   

2.
To clarify the mechanism of mercury adsorption on gold surfaces thin epitaxial gold films have been exposed to trace amounts of gaseous mercury under laboratory conditions for different periods of time. The changes in the surface morphology of the thin films caused by the exposure have been studied by scanning tunneling microscopy (STM). The evolution of the surface structures with time has been also investigated, in the course of a few days after the exposure. The adsorption of mercury on the gold surfaces has caused drastic changes in the morphology of the surfaces. Pits and islands of 2 to 30 nm in diameter have appeared on the surface, their size and density per unit area depending on the amount of exposure to mercury. The formation of pits and islands followed a certain path of events.  相似文献   

3.
To clarify the mechanism of mercury adsorption on gold surfaces thin epitaxial gold films have been exposed to trace amounts of gaseous mercury under laboratory conditions for different periods of time. The changes in the surface morphology of the thin films caused by the exposure have been studied by scanning tunneling microscopy (STM). The evolution of the surface structures with time has been also investigated, in the course of a few days after the exposure. The adsorption of mercury on the gold surfaces has caused drastic changes in the morphology of the surfaces. Pits and islands of 2 to 30 nm in diameter have appeared on the surface, their size and density per unit area depending on the amount of exposure to mercury. The formation of pits and islands followed a certain path of events.  相似文献   

4.
Cellulose is deposited on silicon wafer surfaces via spin coating from a solution of cellulose in dimethylacetamide (+7% lithium chloride). The resulting cellulose layers were analyzed by ellipsometry, AFM, FTIR, ICP-MS, X-ray reflectivity, and contact angle measurements. For cellulose concentrations below 0.07 wt% the wafer surfaces are covered with a network of cellulose fibrils. For concentrations between 0.07 and 0.5 wt%, closed films with thicknesses between 1.5 and approximately 10 nm are obtained. These films are molecularly smooth (rms roughness<2 nm). Higher concentrations result in thicker films with significantly rougher surfaces (rms roughness>2 nm). The cellulose layers were used to investigate cellulose/cellulose adhesion and their modification by polyelectrolytes. To this end the sticking behavior of cellulose beads was analyzed. It is demonstrated that the sticking of the beads depends on the type, amount, and adsorption symmetry of adsorbed polyelectrolyte. Low, incomplete polyelectrolyte coverage always enhances sticking, whereas for high coverage the symmetry of the polyelectrolyte coating is very important. In this case, sticking (adhesion) is enhanced if only one surface is covered with polyelectrolyte prior to contact. If both surfaces were fully covered with polyelectrolytes before contact, sticking (adhesion) is decreased.  相似文献   

5.
Kelvin probe force microscopy (KPFM) and atomic force microscopy (AFM) are employed to probe the surface potential and topography of octadecyltrichlorosilane [OTS, CH3(CH2)17SiCl3] self-assembled monolayers (SAMs) on oxidized Si(100) and polycrystalline silicon surfaces as a function of deposition temperature and substrate roughness with particular attention paid to the monitoring of SAM adsorption on highly rough surfaces. In these studies, it is found that the surface potential magnitude of the adsorbed layer is larger for monolayers formed in the liquid-condensed (LC) phase than for those formed in the liquid-expanded (LE) phase. Experiments on individual islands in the LC phase show that surface potential and monolayer thickness increase with increasing island size; islands larger than about 1.5 microm reach maximum potential and height values of 48+/-4 mV and 2.7+/-0.1 nm, with respect to the underlying oxidized surface. It is also shown that KPFM is suitable for the study of monolayer adsorption on polycrystalline surfaces, for which preexisting surface texture makes the use of traditional scanning probe techniques for molecular recognition difficult. In these scenarios it is shown that OTS growth occurs preferentially along grain boundaries in fingerlike patterns having a molecular arrangement comparable to that of LC phase islands on atomically smooth silicon. These findings indicate that surface potential measurements provide a highly accurate, local means of probing monolayer morphology on rough surfaces encountered in many applications.  相似文献   

6.
通过表面引发原子转移自由基聚合(ATRP)在硅表面接枝了聚(N-异丙基丙烯酰胺)(PNIPAAm)聚合物刷,并考察了PNIPAAm改性表面在单一蛋白质溶液以及血浆中与血浆蛋白质之间的相互作用.蛋白质吸附测试表明,与未改性的硅表面相比,改性后的表面对纤维蛋白原的吸附量大大降低,特别是在血浆中纤维蛋白原吸附量小于5ng/c...  相似文献   

7.
在超高真空条件下, 采用电子束阻挡势技术测量固体表面功函数连续变化, 并与AES, TDS等手段相配合, 研究了氧在Ag和Ag-Pd合金表面的吸附和脱附动力学。结果表明, 在Ag和Ag-Pd合金表面的两种不同的氧吸附态, 具有相反的电荷转移效应, 未解离的分子态吸附降低了表面功函数, 而解离的原子态氧吸附使表面功函数明显升高。与纯银相比, 氧在银钯合金表面吸附具有较小的粘附系数和较大的偶极矩。银钯合金组成变化时功函数和AES的连续测量表明, 表面结构从无序向有序转变和表面银偏析均为功函数降低过程。  相似文献   

8.
The adsorption of Ca atoms on pristine and electron-irradiated poly(methyl methacrylate) (PMMA) surfaces at 300 K has been studied by adsorption microcalorimetry, atomic beam/surface scattering, and low-energy He+ ion scattering spectroscopy (ISS). On pristine PMMA, the initial sticking probability of Ca is 0.5, increasing quickly with Ca coverage. Below 0.5 ML, the heat of adsorption is 730-780 kJ/mol, much higher than Ca's sublimation energy (178 kJ/mol). The Ca here is invisible to ISS, which is attributed to Ca binding to ester groups below the CH3/CH2-terminated PMMA surface. The adsorption energy increases with coverage, suggesting attractions between neighboring Ca-ester complexes. Above 0.5 ML, Ca starts to grow as three-dimensional (3D) Ca clusters on top of the surface, which dominate growth after 2 ML. It is proposed that each Ca reacts with two esters to form the Ca carboxylate of PMMA, because this reaction's heat would be close to that observed. The total amount of Ca that binds to subsurface sites is estimated from the integral heat of adsorption to involve 4-6 layers of ester groups. Exposing the PMMA surface to electrons increases Ca's initial sticking probability but lowers its adsorption energy. This is attributed to electron-induced defects acting as nucleation sites for 3D Ca islands, whose growth now competes kinetically with Ca diffusing to subsurface esters. Consequently, only two layers of subsurface esters get populated at saturation. The heat eventually reaches Ca's bulk heat of sublimation on all PMMA surfaces, where pure, bulk-like Ca thin films form.  相似文献   

9.
The dynamics and kinetics of the dissociation of hydrogen over the hexagonal close packed platinum (Pt(111)) surface are investigated using Car–Parrinello molecular dynamics and static density functional theory calculations of the potential energy surfaces. The calculations model the reference energy‐resolved molecular beam experiments, considering the degrees of freedom of the catalytic surface. Two‐dimensional potential energy surfaces above the main sites on Pt(111) are determined. Combined with Car–Parrinello trajectories, they confirm the dissociative adsorption of H2 as the only adsorption pathway on this surface at H2 incindence energies above 5 kJ/mol. A direct determination of energy‐resolved sticking coefficients from molecular dynamics is also performed, showing an excellent agreement with the experimental data at incidence energies in the 5–30 kJ/mol range. Application of dispersion corrections does not lead to an improvement in the prediction of the H2 sticking coefficient. The adsorption reaction rate obtained from the calculated sticking coefficients is consistent with experimentally derived literature values.  相似文献   

10.
The dynamics of H(2)O adsorption on Pt{110}-(1 x 2) is studied using supersonic molecular beam and temperature programed desorption techniques. The sticking probabilities are measured using the King and Wells method at a surface temperature of 165 K. The absolute initial sticking probability s(0) of H(2)O is 0.54+/-0.03 for an incident kinetic energy of 27 kJmol. However, an unusual molecular beam flux dependence on s(0) is also found. At low water coverage (theta<1), the sticking probability is independent of coverage due either to diffusion in an extrinsic precursor state formed above bilayer islands or to incorporation into the islands. We define theta=1 as the water coverage when the dissociative sticking probability of D(2) on a surface predosed with water has dropped to zero. The slow falling H(2)O sticking probability at theta>1 results from compression of the bilayer and the formation of multilayers. Temperature programed desorption of water shows fractional order kinetics consistent with hydrogen-bonded islands on the surface. A remarkable dependence of the initial sticking probability on the translational (1-27 kJ/mol) and internal energies of water is observed: s(0) is found to be essentially a step function of translational energy, increasing fivefold at a threshold energy of 5 kJ/mol. The threshold migrates to higher energies with increasing nozzle temperature (300-700 K). We conclude that both rotational state and rotational alignment of the water molecules in the seeded supersonic expansion are implicated in dictating the adsorption process.  相似文献   

11.
We report on the use of patterned superhydrophobic silicon nanowire surfaces for the efficient, selective transfer of biological molecules and nanoparticles. Superhydrophilic patterns are prepared on superhydrophobic silicon nanowire surfaces using standard optical lithography. The resulting water-repellent surface allows material transfer and physisorption to the superhydrophilic islands upon exposure to an aqueous solution containing peptides, proteins, or nanoparticles.  相似文献   

12.
Direct adsorption of phenylacetylene on clean silicon surface Si(100)-2 x 1 is studied in ultrahigh vacuum (UHV). The combination of scanning tunnel microscopy (STM) and surface differential reflectance spectroscopy (SDRS) with Monte Carlo calculations are put together to draw a realistic kinetic model of the evolution of the surface coverage as a function of the molecular exposure. STM images of weakly covered surfaces provide evidence of two very distinct adsorption geometries for phenylacetylene, with slightly different initial sticking probabilities. One configuration is detected with STM as a bright spot that occupies two dangling bonds of a single dimer, whereas the other configuration occupies three dangling bonds of adjacent dimers. These data are used to implement a Monte Carlo model which further serves to design an accurate kinetic model. The resulting evolution toward saturation is compared to the optical data from surface differential reflectance spectroscopy (SDRS). SDRS is an in situ technique that monitors the exact proportion of affected adsorption sites and therefore gives access to the surface coverage which is evaluated at 0.65. We investigate the effect of surface temperature on this adsorption mechanism and show that it has no major effect either on kinetics or on structure, unless it passes the threshold of dissociation measured at ca. 200 degrees C. This offers a comprehensive image of the whole adsorption process of phenylacetylene from initial up to complete saturation.  相似文献   

13.
Molecular and atomic interactions of hydrogen on dust grains covered with ice at low temperatures are key mechanisms for star formation and chemistry in dark interstellar clouds. We have experimentally studied the interaction of atomic and molecular deuterium on nonporous amorphous water ice surfaces between 8 and 30 K, in conditions compatible with an extrapolation to an astrophysical context. The adsorption energy of D(2) presents a wide distribution, as already observed on porous water ice surfaces. At low coverage, the sticking coefficient of D(2) increases linearly with the number of deuterium molecules already adsorbed on the surface. Recombination of atomic D occurs via a prompt reaction that releases molecules into the gas phase. Part of the newly formed molecules are in vibrationally excited states (v=1-7). The atomic recombination efficiency increases with the presence of D(2) molecules already adsorbed on the water ice, probably because these increase the sticking coefficient of the atoms, as in the case of incident D(2). We have measured the atomic recombination efficiency in the presence of already absorbed D(2), as it is expected to occur in the interstellar medium. The recombination efficiency decreases rapidly with increasing temperature and is zero at 13 K. This allows us to estimate an upper limit to the value of the atom adsorption energy E(a) approximately 29 meV, in agreement with previous calculations.  相似文献   

14.
Using time-dependent high-resolution x-ray photoelectron spectroscopy at BESSY II, the adsorption and desorption processes of CO on stepped Pt(355) = Pt[5(111) x (111)] were investigated. From a quantitative analysis of C 1s data, the distribution of CO on the various adsorption sites can be determined continuously during adsorption and desorption. These unique data show that the terrace sites are only occupied when the step sites are almost saturated, even at temperatures as low as 130 K. The coverage-dependent occupation of on-top and bridge adsorption sites on the (111) terraces of Pt(355) is found to differ from that on Pt(111), which is attributed to the finite width of the terraces and changes in adsorbate-adsorbate interactions. In particular, no long-range order of the adsorbate layer could be observed by low-energy electron diffraction. Further details are derived from sticking coefficient measurements using the method devised by King and Wells [Proc. R. Soc. London, Ser. A 339, 245 (1974)] and temperature-programmed desorption. The CO saturation coverage is found to be slightly smaller on the stepped surface as compared to that on Pt(111). The initial sticking coefficient has the same high value of 0.91 for both surfaces.  相似文献   

15.
Surfaces based on grafted poly(2-methacryloyloxyethyl phosphorylcholine) (poly(MPC)) "brushes" with a constant graft density of 0.39 chain/nm2 and chain length from 5 to 200 monomer units were prepared by surface-initiated atom transfer radical polymerization (ATRP) on silicon wafers. The chain length and layer thickness of the poly(MPC) grafts were varied via the ratio of MPC to sacrificial initiator. The surfaces were characterized by water contact angle, XPS, and AFM. The effect of poly(MPC) chain length on fibrinogen and lysozyme adsorption was studied in TBS buffer at pH 7.4. The adsorption of both proteins on the poly(MPC)-grafted surfaces was greatly reduced compared to the unmodified silicon. Adsorption decreased with increasing chain length of the poly(MPC) grafts. Grafts of chain length 200 (MW 59 000) gave adsorption levels of 7 and 2 ng/cm2, respectively, for fibrinogen and lysozyme at 1 mg/mL protein concentration, corresponding to reductions of greater than 98% compared to the unmodified silicon. Adsorption experiments using mixtures of the two proteins showed that the suppression of protein adsorption on the poly(MPC)-grafted surfaces was not strongly dependent on protein size or charge.  相似文献   

16.
Transient state kinetics of the catalytic oxidation of CO with O2 on Pd‐surfaces has been measured under isothermal conditions by using a molecular beam approach. Systematic studies were carried out as a function of reaction temperature and CO+O2 composition. With sufficient kinetic evidence, we have demonstrated the positive influence of subsurface oxygen towards CO‐adsorption and oxidation to CO2 at high temperatures (600–900 K) on Pd‐surfaces, and the likely electronic nature of the surface changes with oxygen in the subsurface. These studies also provide a direct proof for CO‐adsorption with a significantly reactive sticking coefficient at high temperatures on Pd‐surfaces exhibiting a significant subsurface O‐coverage.  相似文献   

17.
Dissociative adsorption at 300 K is shown to proceed only on unreconstructed Pt(100)–(1×1) surface. When heated, NO (ad) layers behave in a similar way on both surfaces. Dissociation products are N2 and O(ad). Adsorption on the (hex) surface is supported to occur in islands. The island size in the saturation layer appears to be 40 Å.  相似文献   

18.
The adsorption of water (D(2)O) molecules on Rh(111) at 20 K was investigated using infrared reflection absorption spectroscopy (IRAS). At the initial stage of adsorption, water molecules exist as monomers on Rh(111). With increasing water coverage, monomers aggregate into dimers, larger clusters (n = 3-6), and two-dimensional (2D) islands. Further exposure of water molecules leads to the formation of three-dimensional (3D) water islands and finally to a bulk amorphous ice layer. Upon heating, the monomer and dimer species thermally migrate on the surface and aggregate to form larger clusters and 2D islands. Based on the temperature dependence of OD stretching peaks, we succeeded in distinguishing water molecules inside 2D islands from those at the edge of 2D islands. From the comparison with the previous vibrational spectra of water clusters on other metal surfaces, we conclude that the number of water molecules at the edge of 2D islands is comparable with that of water molecules inside 2D islands on the Rh(111) surface at 20 K. This indicates that the surface migration of water molecules on Rh(111) is hindered as compared with the cases on Pt(111) and Ni(111) and thus the size of 2D islands on Rh(111) is relatively small.  相似文献   

19.
Biofunctionalization of silicon substrates is important to the development of silicon-based biosensors and devices. Compared to conventional organosiloxane films on silicon oxide intermediate layers, organic monolayers directly bound to the nonoxidized silicon substrates via Si-C bonds enhance the sensitivity of detection and the stability against hydrolytic cleavage. Such monolayers presenting a high density of terminal alkynyl groups for bioconjugation via copper-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC, a "click" reaction) were reported. However, yields of the CuAAC reactions on these monolayer platforms were low. Also, the nonspecific adsorption of proteins on the resultant surfaces remained a major obstacle for many potential biological applications. Herein, we report a new type of "clickable" monolayers grown by selective, photoactivated surface hydrosilylation of α,ω-alkenynes, where the alkynyl terminal is protected with a trimethylgermanyl (TMG) group, on hydrogen-terminated silicon substrates. The TMG groups on the film are readily removed in aqueous solutions in the presence of Cu(I). Significantly, the degermanylation and the subsequent CuAAC reaction with various azides could be combined into a single step in good yields. Thus, oligo(ethylene glycol) (OEG) with an azido tag was attached to the TMG-alkyne surfaces, leading to OEG-terminated surfaces that reduced the nonspecific adsorption of protein (fibrinogen) by >98%. The CuAAC reaction could be performed in microarray format to generate arrays of mannose and biotin with varied densities on the protein-resistant OEG background. We also demonstrated that the monolayer platform could be functionalized with mannose for highly specific capturing of living targets (Escherichia coli expressing fimbriae) onto the silicon substrates.  相似文献   

20.
The kinetics of NO adsorption and dissociation on Pd(111) surfaces and the NO sticking coefficient (s(NO)) were probed by isothermal kinetic measurements between 300 and 525 K using a molecular beam instrument. NO dissociation and N2 productions were observed in the transient state from 425 K and above on Pd(111) surfaces with selective nitrogen production. Maximum nitrogen production was observed between 475 and 500 K. It was found that, at low temperatures, between 300 and 350 K, molecular adsorption occurs with a constant initial s(NO) of 0.5 until the Pd(111) surface is covered to about 70-80% by NO. Then s(NO) rapidly decreases with further increasing NO coverage, indicating typical precursor kinetics. The dynamic adsorption - desorption equilibrium on Pd(111) was probed in modulated beam experiments below 500 K. CO titration experiments after NO dosing indicate the diffusion of oxygen into the subsurface regions and beginning surface oxidation at > or = 475 K. Finally, we discuss the results with respect to the rate-limiting character of the different elementary steps of the reaction system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号