首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 150 毫秒
1.
The Hamiltonian describing rotational spectra of linear triatomic molecules has been derived by using the dynamical Lie algebra of symmetry group U1(4) U2(4). After rovibrational interactions being considered, the eigenvalue expression of the Hamiltonian has the form of term value equation commonly used in spectrum analysis. The molecular rotational constants can be obtained by using the expression and fitting it to the observed lines. As an example, the rotational levels of v2 band for transition (02°0-0110) of molecules N2O and HCN have been fitted and the fitting root-mean-square errors (RMS) are 0.00001 and 0.0014 cm-1, respectively.  相似文献   

2.
Rotation-vibration spectra of a triatomic molecule can be classified by the irreducible representations of the group U(5). The dynamical symmetry U(5) ? O(5) ? O(3) is discussed. Its application to the spectrum of HCN is considered.  相似文献   

3.
Uranium(IV) complexation by 2-furoic acid (2-FA) was examined to better understand the effects of ligand identity and reaction conditions on species formation and stability. Five compounds were isolated: [UCl2(2-FA)2(H2O)2]n ( 1 ), [U4Cl10O2(THF)6(2-FA)2] ⋅ 2 THF ( 2 ), [U6O4(OH)4(H2O)3(2-FA)12] ⋅ 7 THF ⋅ H2O ( 3 ), [U6O4(OH)4(H2O)2(2-FA)12] ⋅ 8.76 H2O ( 4 ), and [U38Cl42O54(OH)2(H2O)20] ⋅ m H2O ⋅ n THF ( 5 ). The structures were determined by single-crystal X-ray diffraction and further characterized by Raman, IR, and optical absorption spectroscopy. The thermal stability and magnetic behavior of the compounds were also examined. Variations in the synthetic conditions led to notable differences in the structural units observed in the solid state. At low H2O/THF ratios, a tetranuclear oxo-bridged [U4O2] core was isolated. Aging of this solution resulted in the formation a U38 oxo cluster capped by chloro and water ligands. However, at increasing water concentrations only hexanuclear units were observed. In all cases, at temperatures of 100–120 °C, UO2 nanoparticles formed.  相似文献   

4.
Uranium(IV) oxide clusters, colloids, and materials are designed and studied for 1) nuclear materials applications, 2) understanding the environmental fate and transport of actinides, and 3) exploring the complex bonding behavior of open-shell f-elements. UIV-oxyhydroxsulfate clusters are particularly relevant in industrial processes and in nature. Recent studies have shown that counter-cations to these polynuclear anions differentiate rich structural topologies in the solid-state. Herein, we present nine different structures with wheel-shaped [U70(OH)36(O)64(SO4)60]4− (U70) linked into one- and two-dimensional frameworks with sulfate, divalent transition metals (CrII, FeII, CoII, NiII) and UV. Small-angle X-ray scattering of these phases dissolved in butylamine reveals differing supramolecular assembly of U70 clusters, controlled primarily by sulfates. However, observed trends in transition metal linking guide future design of U70 materials with different topologies. Finally, U70 linking via UIV-O-UV-O-UIV bridges presents a rare example of mixed-oxidation-state uranium oxides without disorder.  相似文献   

5.
This paper is the first in a series of two directed toward a unitary calculus for group-function-type approaches to the many-electron correlation problem. In this paper we present a complete derivation of the matrix elements of the U(n = n1 + n2) generators, for the representations approapriate to many-electron systems, in a basis symmetry adapted to the subgroup U(n1) × U(n2). Explicit formulae for the fundamental U(n):U(n1) × U(n2) reduced Wigner coefficients, which are needed for the general multishell problem, are also obtained. The symmetry properties of the reduced Wigner coefficients and reduced matrix elements are investigated, and a suitable phase convention is given.  相似文献   

6.
The energy of a graph is defined as the sum of the absolute values of all the eigenvalues of the graph. Let U(k) be the set of all unicyclic graphs with a perfect matching. Let C g(G) be the unique cycle of G with length g(G), and M(G) be a perfect matching of G. Let U 0(k) be the subset of U(k) such that g(G)≡ 0 (mod 4), there are just g/2 independence edges of M(G) in C g(G) and there are some edges of E(G)\ M(G) in G\ C g(G) for any GU 0(k). In this paper, we discuss the graphs with minimal and second minimal energies in U *(k) = U(k)\ U 0(k), the graph with minimal energy in U 0(k), and propose a conjecture on the graph with minimal energy in U(k).   相似文献   

7.
The photodissociation dynamics of the triatomic (or pseudo‐triatomic) system in the nonadiabatic multiple electronic states is investigated by employing a time‐dependent quantum wave packet method, while the time propagation of the wave packet is carried out using the split‐operator scheme. As a numerical example, the photodissociation dynamics of CH3I in three electronic states 1Q1(A′), 1Q1(A″), and 3Q0+ is studied and CH3I is treated as a pseudotriatomic model. The absorption spectra and product vibrational state distributions are calculated and compared with previous theoretical work. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

8.
Two new arene inverted‐sandwich complexes of uranium supported by siloxide ancillary ligands [K{U(OSi(OtBu)3)3}2(μ‐η66‐C7H8)] ( 3 ) and [K2{U(OSi(OtBu)3)3}2(μ‐η66‐C7H8)] ( 4 ) were synthesized by the reduction of the parent arene‐bridged complex [{U(OSi(OtBu)3)3}2(μ‐η66‐C7H8)] ( 2 ) with stoichiometric amounts of KC8 yielding a rare family of inverted‐sandwich complexes in three states of charge. The structural data and computational studies of the electronic structure are in agreement with the presence of high‐valent uranium centers bridged by a reduced tetra‐anionic toluene with the best formulation being UV–(arene4?)–UV, KUIV–(arene4?)–UV, and K2UIV–(arene4?)–UIV for complexes 2 , 3 , and 4 respectively. The potassium cations in complexes 3 and 4 are coordinated to the siloxide ligands both in the solid state and in solution. The addition of KOTf (OTf=triflate) to the neutral compound 2 promotes its disproportionation to yield complexes 3 and 4 (depending on the stoichiometry) and the UIV mononuclear complex [U(OSi(OtBu)3)3(OTf)(thf)2] ( 5 ). This unprecedented reactivity demonstrates the key role of potassium for the stability of these complexes.  相似文献   

9.
An actinyl peroxide cage cluster, Li48+mK12(OH)m[UO2(O2)(OH)]60 (H2O)n (m≈20 and n≈310; U60), discriminates precisely between Na+ and K+ ions when heated to certain temperatures, a most essential feature for K+ selective filters. The U60 clusters demonstrate several other features in common with K+ ion channels, including passive transport of K+ ions, a high flux rate, and the dehydration of U60 and K+ ions. These qualities make U60 (a pure inorganic cluster) a promising ion channel mimic in an aqueous environment. Laser light scattering (LLS) and isothermal titration calorimetry (ITC) studies revealed that the tailorable ion selectivity of U60 clusters is a result of the thermal responsiveness of the U60 hydration shells.  相似文献   

10.
Four metal–organic frameworks (MOF) with tetravalent uranium have been solvothermally synthesized by treating UCl4 with rigid dicarboxylate linkers in N,N‐dimethylfomamide (DMF). The use of the ditopic ligands 4,4′‐biphenyldicarboxylate ( 1 ), 2,6‐naphthalenedicarboxylate ( 2 ), terephthalate ( 3 ), and fumarate ( 4 ) resulted in the formation of three‐dimensional networks based on the hexanuclear uranium‐centered motif [U6O4(OH)4(H2O)6]. This motif corresponds to an octahedral configuration of uranium nodes and is also known for thorium in crystalline solids. The atomic arrangement of this specific building unit with organic linkers is similar to that found in the zirconium‐based porous compounds of the UiO‐66/67 series. The structure of [U6O4(OH)4(H2O)6(L)6] ? X (L=dicarboxylate ligand; X=DMF) shows the inorganic hexamers connected in a face‐centered cubic manner through the ditopic linkers to build up a three‐dimensional framework that delimits octahedral (from 5.4 Å for 4 up to 14.0 Å for 1 ) and tetrahedral cavities. The four compounds have been characterized by using single‐crystal X‐ray diffraction analysis (or powder diffraction analysis for 4 ). The tetravalent state of uranium has been examined by using XPS and solid‐state UV/Vis analyses. The measurement of the Brunauer–Emmett–Teller surface area indicated very low values (Langmuir <300 m2 g?1 for 1 , <7 m2 g?1 for 2 – 4 ) and showed that the structures are quite unstable upon removal of the encapsulated DMF solvent.  相似文献   

11.
The determination of the subduction coefficients for states of the unitary group U(n) under the restrictions U(n) ↓ U(n1) ? U(n2) have been considered for the spin free states of many electron systems. Using the transformation properties of the tensor basis spanning the irreducible representation 〈2N/2–S, 12S〉 of U(n) under the permutations of electron coordinates, a simple programmable procedure has been developed for the determination of these coefficients. The procedure has been illustrated using a simple example.  相似文献   

12.
Summary This is the first paper of a series of two, which enables the evaluation ofU(n) generator matrix elements in the non-canonical Weyl tableau basis adapted to subgroupU(n 1U(n 2). In this paper the explicit closed formulae for subduction coefficients are presented. These formulae will become useful through an inductive method to be presented in the second paper.  相似文献   

13.
Potential energy surfaces play an important role in studying theoretical chemistry. In the present paper, we first use the dynamical symmetry group G = U 1(4) U 2(4) U 3(4) to get the expression of the potential energy surface for the stable linear asymmetric tetratomic molecules with the stretching vibration and the dissociation energy. The method can be applied to a number of stable tetratomic molecules. As an example we use the method to calculate the potential energy surface of C2HD.  相似文献   

14.
Three six-coordinate DyIII single-molecule magnets (SMMs) [Dy(OtBu)2(L)4]+ with local D4h symmetry are obtained by optimizing the equatorial ligands. One of the compounds with L=4-phenylpyridine shows an energy barrier (Ueff) of 2075(11) K, which is the third largest Ueff, and the first Ueff>2000 K for SMMs with axial-type symmetry so far. Ab initio analysis indicates that the exceptional uniaxial magnetic anisotropy is deeply related to the axially compressed octahedral geometry. This work provides a new insight into the local D4h symmetry for high-performance SMMs.  相似文献   

15.
Herein, we report the redox reactivity of a multimetallic uranium complex supported by triphenylsiloxide (−OSiPh3) ligands, where we show that low valent synthons can be stabilized via an unprecedented mechanism involving intramolecular ligand migration. The two- and three-electron reduction of the oxo-bridged diuranium(IV) complex [{(Ph3SiO)3(DME)U}2(μ-O)], 4 , yields the formal “UII/UIV”, 5 , and “UI/UIV”, 6 , complexes via ligand migration and formation of uranium-arene δ-bond interactions. Remarkably, complex 5 effects the two-electron reductive coupling of pyridine affording complex 7 , which demonstrates that the electron-transfer is accompanied by ligand migration, restoring the original ligand arrangement found in 4 . This work provides a new method for controlling the redox reactivity in molecular complexes of unstable, low-valent metal centers, and can lead to the further development of f-elements redox reactivity.  相似文献   

16.
The precise guidance to different ions across the biological channels is essential for many biological processes. An artificial nanopore system will facilitate the study of the ion‐transport mechanism through nanosized channels and offer new views for designing nanodevices. Herein we reveal that a 2.5 nm‐sized, fullerene‐shaped molecular cluster Li48+mK12(OH)m[UO2(O2)(OH)]60?(H2O)n (m≈20 and n≈310) ( U60 ) shows selective permeability to different alkali ions. The subnanometer pores on the water–ligand‐rich surface of U60 are able to block Rb+ and Cs+ ions from passing through, while allowing Na+ and K+ ions, which possess larger hydrated sizes, to enter the interior space of U60 . An interestingly high entropy gain during the binding process between U60 and alkali ions suggests that the hydration shells of Na+/K+ and U60 are damaged during the interaction. The ion selectivity of U60 is greatly influenced by both the morphologies of the surface nanopores and the dynamics of the hydration shells.  相似文献   

17.
By use of the graphical method of spin algebra, simple, and closed expressions for SN1+N2 ? SN1 ? SN2 and U(n1 + n2) ? U(n1) ? U(n2), subduction coefficients are derived.  相似文献   

18.
The spread s(G) of a graph G is defined as s(G) = max i,j i − λ j |, where the maximum is taken over all pairs of eigenvalues of G. Let U(n,k) denote the set of all unicyclic graphs on n vertices with a maximum matching of cardinality k, and U *(n,k) the set of triangle-free graphs in U(n,k). In this paper, we determine the graphs with the largest and second largest spectral radius in U *(n,k), and the graph with the largest spread in U(n,k).   相似文献   

19.
The Clinton function αn( R ) corresponding to the model potential energy function Un( R ), is proposed as a test of applicability of Un( R ). Such an analysis is given for some model potential energy functions.  相似文献   

20.
 Fully relativistic, four-component Dirac–Fock calculations and quasirelativistic pseudopotential calculations at different ab initio levels are used to study the bonding trends among the naked, triatomic [OAnO] q+ groups or the oxyfluorides [AnO n F m ] q with f 0 configurations. The triatomic f 0 series is suggested to range from the bent ThO2 via the linear OPaO+ to at least NpO2 3+, a possible new gas-phase species. The neutral oxyfluoride molecules include the experimentally unknown NpO2F3 and PuO2F4. The latter is a candidate for the so far unknown oxidation state Pu(VIII), which is found to lie considerably above Pu(VI), but to be locally stable. Their all-oxygen isoelectronic analogues are NpO5 3−, known in the solid state, and the unknown PuO6 4−. Further possible candidates for Pu(VIII) are PuO4(D 4h ) and the cube-shaped PuF8(O h ). Isoelectronic UF8 2− is calculated to be D 4d , in agreement with experiment. Received: 18 May 2001 / Accepted: 21 June 2001 / Published online: 11 October 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号