首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A novel vinyl‐hydantoin monomer, 3‐(4′‐vinylbenzyl)‐5,5‐dimethylhydantoin, was synthesized in a good yield and was fully characterized with Fourier transform infrared (FTIR) and 1H NMR spectra. Its homopolymer and copolymers with several common acrylic and vinyl monomers, such as vinyl acetate, acrylonitrile, and methyl methacrylate, were readily prepared under mild conditions. The polymers were characterized with FTIR and 1H NMR, and their thermal properties were analyzed with differential scanning calorimetry studies. The halogenated products of the corresponding copolymers exhibited potent antibacterial properties against Escherichia coli, and the antibacterial properties were durable and regenerable. The structure–property relationships of the polymers were further discussed. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3348–3355, 2001  相似文献   

2.
Copolymers containing oligo(phenylene vinylene) (2.5), fluorene, and 4,4‐dihexyldithienosilole (DTS) units were synthesized and characterized. The π‐conjugated monomers were joined with the palladium(0)‐catalyzed Suzuki–Miyaura coupling reaction, thus forming either biphenyl– or phenyl–thiophene linkages. These polymers were photoluminescent, with the fluorescent quantum efficiency between 54 and 63% and with λmax for fluorescence at ~448 nm in tetrahydrofuran. The presence of 5% DTS in the copolymers had little influence on the optical absorption and emission wavelengths. Double‐layer light‐emitting‐diode devices using these polymers as emissive layers had low turn‐on voltages (3.5–4 V) and moderate external quantum efficiencies (0.14–0.30%). The results show that DTS plays a positive role in improving the charge‐injection characteristics of poly(phenylene vinylene) materials. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2048–2058  相似文献   

3.
A series of poly[ω‐(4′‐methoxy‐biphenyl‐4‐oxy)alkyl‐1‐glycidylether]s were synthesized by chemically modifying the corresponding poly(ω‐bromoalkyl‐1‐glycidylether)s with the sodium salt of 4‐hydroxy‐4′‐methoxybiphenyl. New high‐molecular‐weight side‐chain liquid‐crystalline polymers were obtained with excellent yields and almost quantitative degrees of modification. They were all insoluble in THF and other common solvents. Characterization by 13C NMR confirmed that all the polymers had the expected structure. The liquid crystalline behavior of the polymers was analyzed by DSC and polarized optical microscopy, and mesophase assignments were confirmed by X‐ray diffraction studies. Polymers that had alkyl spacers with n = 2 and 4 were smectic C, those that had spacers with n = 6 and 8 were nematic cybotactic, and those that had longer spacers (n = 10 and 12) were smectic C again. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5998–6006, 2005  相似文献   

4.
A dendritic macroinitiator having 16 TEMPO‐based alkoxyamines, Star‐16 , was prepared by the reaction of a dendritic macroinitiator having eight TEMPO‐based alkoxyamines, [G‐3]‐OH , with 4,4′‐bis(chlorocarbonyl)biphenyl. The nitroxide‐mediated radical polymerization (NMRP) of styrene (St) from Star‐16 gave 16‐arm star polymers with PDI of 1.19–1.47, and NMPR of 4‐vinylpyridine from the 16‐arm star polymer gave 16‐arm star diblock copolymers with PDI of 1.30–1.43. The ring‐opening polymerization of ε‐caprolactone from [G‐3]‐OH and the subsequent NMRP of St gave AB8 9‐miktoarm star copolymers with PDI of 1.30–1.38. The benzyl ether linkages of the 16‐arm star polymers and the AB8 9‐miktoarm star copolymers were cleaved by treating with Me3SiI, and the resultant poly(St) arms were investigated by size exclusion chromatography (SEC). The SEC results showed PDIs of 1.23–1.28 and 1.18–1.22 for the star polymers and miktoarm stars copolymers, respectively, showing that they have well‐controlled poly(St) arms. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1159–1169, 2007.  相似文献   

5.
A series of poly(4,4′‐biphenylenealkenylene)s and copolymers were prepared by the acyclic diene metathesis (ADMET) polymerization of 4,4′‐bis(alkenylene)1,1′‐biphenyls. Unsaturated polymers thus prepared were then hydrogenated to produce the corresponding saturated polymers. All the polymers were found to be thermotropic and to form solidlike smectic phases in melt. Their liquid crystallinity (LC) was studied by differential scanning calorimetry (DSC), X‐ray diffractometry, and polarizing microscopy. We observed that one of the phenylene units of the biphenyl structure could selectively be hydrogenated at an elevated temperature. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1335–1349, 2004  相似文献   

6.
Comb‐shaped graft copolymers with poly(methyl methacrylate) as a handle were synthesized by the macromonomer technique in two steps. First, polytetrahydrofuran acrylate (A‐PTHF), prepared by the living cationic ring‐opening polymerization of tetrahydrofuran, underwent homopolymerization with 1‐(ethoxycarbonyl)prop‐1‐yl dithiobenzoate as an initiator under 60Co γ irradiation at room temperature; Second, the handle of the comb‐shaped copolymers was prepared by the block copolymerization of methyl methacrylate with P(A‐PTHF) as a macroinitiator under 60Co γ irradiation. The two‐step polymerizations were proved to be controlled with the following evidence: the straight line of ln[M]0/[M] versus the polymerization time, the linear increase in the number‐average molecular weight with the conversion, and the relatively narrow molecular weight distribution. The structures of the P(A‐PTHF) and final comb‐shaped copolymers were characterized by 1H NMR spectroscopy and gel permeation chromatography. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3367–3378, 2002  相似文献   

7.
Three random copolymers ( P1–P3 ) comprising phenylenevinylene and electron‐transporting aromatic 1,3,4‐oxadiazole segments (11, 18, 28 mol %, respectively) were prepared by Gilch polymerization to investigate the influence of oxadiazole content on their photophysical, electrochemical, and electroluminescent properties. For comparative study, homopolymer poly[2‐methoxy‐5‐(2′‐ethylhexyloxy)‐1,4‐p‐phenylenevinylene] ( P0 ) was also prepared by the same process. The polymers ( P0–P3 ) are soluble in common organic solvents and thermally stable up to 410 °C under a nitrogen atmosphere. Their optical properties were investigated by absorption and photoluminescence spectroscopy. The optical results reveal that the aromatic 1,3,4‐oxadiazole chromophores in P1–P3 suppress the intermolecular interactions. The HOMO and LUMO levels of these polymers were estimated from their cyclic voltammograms. The HOMO levels of P0–P3 are very similar (?5.02 to ?5.03 eV), whereas their LUMO levels decrease readily with increasing oxadiazole content (?2.7, ?3.08, ?3.11, and ?3.19 eV, respectively). Therefore, the electron affinity of the poly(p‐phenylenevinylene) chain can be gradually enhanced by incorporating 1,3,4‐oxadiazole segments. Among the polymers, P1 (11 mol % 1,3,4‐oxadiazole) shows the best EL performance (maximal luminance: 3490 cd/m2, maximal current efficiency: 0.1 cd/A). Further increase in oxadiazole content results in micro‐phase separation that leads to performance deterioration. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4377–4388, 2007  相似文献   

8.
A new vinyl acyl azide monomer, 4‐(azidocarbonyl) phenyl methacrylate, has been synthesized and characterized by NMR and FTIR spectroscopy. The thermal stability of the new monomer has been investigated with FTIR and thermal gravimetry/differential thermal analysis (TG/DTA), and the monomer has been demonstrated to be stable below 50 °C in the solid state. The copolymerizations of the new monomer with methyl acrylate have been carried out at room temperature under 60Co γ‐ray irradiation in the presence of benzyl 1H‐imidazole‐1‐carbodithioate. The results show that the polymerizations bear all the characteristics of controlled/living free‐radical polymerizations, such as the molecular weight increasing linearly with the monomer conversion, the molecular weight distribution being narrow (<1.20), and a linear relationship existing between ln([M]0/[M]) and the polymerization time. The data from 1H NMR and FTIR confirm that no change in the acyl azide groups has occurred in the polymerization process and that acyl azide copolymers have been obtained. The thermal stability of the polymers has also been investigated with TG/DTA and FTIR. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2609–2616, 2007  相似文献   

9.
4‐Chloro‐3‐methyl phenyl methacrylate (CMPM) and 8‐quinolinyl methacrylate (8‐QMA) were synthesized through the reaction of 4‐chloro‐3‐methyl phenol and 8‐hydroxy quinoline, respectively, with methacryloyl chloride. The homopolymers and copolymers were prepared by free‐radical polymerization with azobisisobutyronitrile as the initiator at 70 °C. Copolymers of CMPM and 8‐QMA of different compositions were prepared. The monomers were characterized with IR spectroscopy and 1H NMR techniques. The copolymers were characterized with IR spectroscopy. UV spectroscopy was used to obtain the compositions of the copolymers. The monomer reactivity ratios were calculated with the Fineman–Ross method. The molecular weights and polydispersity values of the copolymers were determined with gel permeation chromatography. The thermal stability of the polymers was evaluated with thermogravimetric analysis under a nitrogen atmosphere. The homopolymers and copolymers were tested for their antimicrobial activity againstbacteria, fungi, and yeast. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 157–167, 2005  相似文献   

10.
A new diimide‐dicarboxylic acid, 2,2′‐dimethyl‐4,4′‐bis(4‐trimellitimidophenoxy)biphenyl (DBTPB), containing a noncoplanar 2,2′‐dimethyl‐4,4′‐biphenylene unit was synthesized by the condensation reaction of 2,2′‐dimethyl‐4,4′‐bis(4‐minophenoxy)biphenyl (DBAPB) with trimellitic anhydride in glacial acetic acid. A series of new polyamide‐imides were prepared by direct polycondensation of DBAPB and various aromatic diamines in N‐methyl‐2‐pyrrolidinone (NMP), using triphenyl phosphite and pyridine as condensing agents. The polymers were produced with high yield and moderate to high inherent viscosities of 0.86–1.33 dL · g−1. Wide‐angle X‐ray diffractograms revealed that the polymers were amorphous. Most of the polymers exhibited good solubility and could be readily dissolved in various solvents such as NMP, N,N‐dimethylacetamide (DMAc), N,N‐dimethylformamide (DMF), dimethyl sulfoxide, pyridine, cyclohexanone, and tetrahydrofuran. These polyamide‐imides had glass‐transition temperatures between 224–302 °C and 10% weight loss temperatures in the range of 501–563 °C in nitrogen atmosphere. The tough polymer films, obtained by casting from DMAc solution, had a tensile strength range of 93–115 MPa and a tensile modulus range of 2.0–2.3 GPa. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 63–70, 2001  相似文献   

11.
Linear and star‐like amphiphilic diblock copolymers were synthesized by the ring‐opening polymerization of ε‐caprolactone and γ‐2‐[2‐(2‐methoxyethoxy)ethoxy]ethoxy‐ε‐caprolactone monomers using zinc undecylenate as a catalyst. These polymers have potential applications as micellar drug delivery vehicles, therefore the properties of the linear and 4‐arm star‐like structures were examined in terms of their molecular weight, viscosity, thermodynamic stability, size, morphology, and drug loading capacity. Both the star‐like and linear block copolymers showed good thermodynamic stability and degradability. However, the star‐like polymers were shown to have increased stability at lower concentrations with a critical micelle concentration (CMC) of 5.62 × 10?4 g L?1, which is less than half the concentration of linear polymer needed to form micelles. The star‐like polymeric micelles showed smaller sizes when compared with their linear counterparts and a higher drug loading capacity of doxorubicin, making them better suited for drug delivery purposes. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3601–3608  相似文献   

12.
A novel heterofunctional initiator, synthesized from pentaerythritol in a three step reaction sequence with two ring opening polymerization (ROP) and two atom transfer radical polymerization (ATRP) initiating sites, was used to prepare A2B2 miktoarm star copolymers of poly(ε‐caprolactone), PεCL, with polystyrene, PS, poly(methyl methacrylate), PMMA, poly(dimethylaminoethyl methacrylate), PDMAEMA, and poly(2‐hydroxyethyl methacrylate), PHEMA. A2B miktoarm stars, A being PεCL or poly(δ‐valerolactone), PδVL and B PS were also prepared from ω,ω‐dihydroxy‐PS, synthesized from ω‐Br‐PS and serinol, by ROP of εCL or δVL. All polymers were characterized by size exclusion chromatography, 1H NMR spectroscopy, and membrane osmometry. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5164–5181, 2007  相似文献   

13.
Three 2,3‐bis(5‐hexylthiophen‐2‐yl)‐6,7‐bis(octyloxy)‐5,8‐di(thiophen‐2‐yl)‐quinoxaline ( BTTQ )‐based conjugated polymers, namely, PF‐BTTQ ( P1 ), PP‐BTTQ ( P2 ), and PDCP‐BTTQ ( P3 ), were successfully synthesized for efficient polymer solar cells (PSCs) with electron‐rich units of fluorene and dialkoxybenzene and electron‐deficient unit dicyanobenzene, respectively. All the polymers exhibited good solubility in common organic solvents and good thermal stability. Their deep‐lying HOMO energy levels enabled them good stability in the air and the relatively low HOMO energy level assured a higher open circuit potential when used in PSCs. Bulk‐heterojunction solar cells were fabricated using these copolymers blended with a fullerene derivative as an acceptor. All of them exhibited promising performance, and the best device performance with power conversion efficiency up to 3.30% was achieved under one sun of AM 1.5 solar simulator illumination (100 mW/cm2). © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
Reactions of N‐(2,4‐dinitrophenyl)pyridinium chloride with 2,5‐dimethyl‐1,4‐phenylenediamine in 1:2, 1:1.5, 1:1, and 2:1 molar ratios caused the ring opening of the pyridinium ring and thereby yielded polymers ( P1 – P4 ) consisting of 5‐(2,5‐dimethyl‐1,4‐phenylene)penta‐2,4‐dienylideneammonium chloride (unit A) and N‐2,5‐dimethyl‐1,4‐phenylene diaza[12]annulenium dichloride (unit B). The 1H NMR spectra suggested that the composition ratios of unit A to unit B in P1 – P4 were 0.98:0.02, 0.94:0.06, 0.81:0.19, and 0.79:0.21, respectively. P1 – P4 showed an absorption maximum (λmax) at a longer wavelength than the monomers because of the expansion of the π‐conjugation system. Films of P3 and P4 showed λmax at a considerably longer wavelength than those in solution, and this was attributable to the ordered structures of the polymers in the solid state. Powder X‐ray diffraction analysis supported the ordered structures of P3 and P4 . Pellets molded from P3 and P4 exhibited a metallic luster, whereas those from P1 and P2 did not show such a luster. Cyclic voltammetry measurements indicated that P1 – P4 were electrochemically active in films. The thermal stability of the polymers depended on the composition ratios of unit A to unit B. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1507–1514, 2007  相似文献   

15.
Two donor/acceptor (D/A)‐based benzo[1,2‐b:4,5‐b′]dithiophene‐alt‐2,3‐biphenyl quinoxaline copolymers of P 1 and P 2 were synthesized pending different functional groups (thiophene or triphenylamine) in the 4‐positions of phenyl rings. Their thermal, photophysical, electrochemical, and photovoltaic properties, as well as morphology of their blending films were investigated. The poly(4,8‐bis((2‐ethyl‐hexyl)oxy)benzo[1,2‐b:4,5‐b'] dithiophene)‐alt‐(2,3‐bis(4′‐bis(N,N‐bis(4‐(octyloxy) phenylamino)‐ 1,1′‐biphen‐4‐yl)quinoxaline) ( P 2) exhibited better photovoltaic performance than poly(4,8‐bis((2‐ethylhexyl)oxy)benzo[1,2‐b:4,5‐b'] dithiophene)‐alt‐(2,3‐bis(4‐(5‐octylthiophen‐2‐yl)phenyl)quinoxaline) ( P 1) in the bulk‐heterojunction polymer solar cells with a configuration of ITO/PEDOT:PSS/polymers: [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM)/LiF/Al. A power conversion efficiency of 3.43%, an open‐circuit voltage of 0.80 V, and a short‐circuit current of 9.20 mA cm?2 were achieved in the P 2‐based cell under the illumination of AM 1.5, 100 mW cm?2. Importantly, this power conversion efficiency level is 2.29 times higher than that in the P 1‐based cell. Our work indicated that incorporating triphenylamine pendant in the D/A‐based polymers can greatly improved the photovoltaic properties for its resulting polymers.  相似文献   

16.
Block copolymers on basis of poly(oxanorbornenes) bearing functional moieties in their side‐chains are prepared via a combination of ROMP‐methods and 1,3‐dipolar‐“click”‐reactions. Starting from N‐substituted‐ω‐bromoalkyl‐oxanorbornenes and alkyl‐/perfluoroalkyl‐oxanorbornenes, block copolymers with molecular weights up to 25,000 g mol?1 were generated. Subsequent nucleophilic exchange‐reactions yielded the block‐copolymers functionalized with ω‐azidoalkyl‐moieties in one block. The 1,3‐azide/alkine‐“click” reactions with a variety of terminal alkynes in the presence of a catalyst system consisting of tetrakis(acetonitrile)hexafluorophosphate copper(I) and tris(1‐benzyl‐5‐methyl‐1H‐ [1,2,3]triazol‐4‐ylmethyl)‐amine furnished the substituted block copolymers in high yields, as proven by NMR‐spectroscopy. The resulting polymers were investigated via temperature‐dependent SAXS‐methods, revealing their microphase separated structure as well as their temperature‐dependent behavior. The presented method offers the generation of a large set of different block‐copolymers from only a small set of starting materials because of the high versatility of the “click” reaction, thus enabling a simple and complete functionalization after the initial polymerization reaction. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 485–499, 2007  相似文献   

17.
Polymeric scaffolds play a crucial role in engineering process of new tissues and effect the cell growth and viability. PLCL copolymers are found to be very useful during cell growth due to their elastic behavior and mechanical strength. Thus, low molecular weight PLCL copolymers of various ratios viz. PLCL(90/10), PLCL(75/25), PLCL(50/50) and PCL were synthesized by ring opening polymerization using stannous octoate as a catalyst. Synthesized polymers were characterized by GPC, 1H‐NMR, FTIR and XRD. The thermal properties of the copolymers were studied using TGA and DSC. Microspheres of about 100 μm diameter were prepared for different copolymers and their in vitro degradation behaviors were studied up to 108 days. It was observed that degradation of PLA content in polymer backbone occurs faster than PCL component which is also indicated by corresponding change in ratios of PLA/PCL, as determined by 1H‐NMR. SEM images of microspheres depicted the surface morphology during degradation and suggested the faster degradation for PLCL (50:50). Copolymers of different thermal, mechanical properties and different degradation behaviors can be prepared by adjusting the composition of copolymers. Various synthesized polymers from this work have been tested in our laboratory as polymeric scaffold for soft tissue engineering. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2755–2764, 2007  相似文献   

18.
A series of novel narrow‐band‐gap copolymers ( P1 ‐ P12 ) composed of alkyl‐substituted fluorene (FO) units and six analogous mono‐ and bis(2‐aryl‐2‐cyanovinyl)‐10‐hexylphenothiazine monomers ( M1 ‐ M6 ) were synthesized by a palladium‐catalyzed Suzuki coupling reaction with two different feed in ratios of FO to M1 ‐ M6 (molar ratio = 3:1 and 1:1). The absorption spectra of polymers P1 ‐ P12 exhibited broad peaks located in the UV and visible regions from 400 to 800 nm with optical band gaps at 1.55–2.10 eV, which fit near the wavelength of the maximum solar photon reflux. Electrochemical experiments displayed that the reversible p‐ and n‐doping processes of copolymers were partially reversible, and the proper HOMO/LUMO levels enabled a high photovoltaic open‐circuit voltage. As blended with [6,6]‐phenyl C61 butyric acid methyl ester (PCBM) as an electron acceptor in bulk heterojunction photovoltaic devices, narrow‐band‐gap polymers P1 ‐ P12 as electron donors showed significant photovoltaic performance which varied with the intramolecular donor‐acceptor interaction and their mixing ratios to PCBM. Under 100 mW/cm2 of AM 1.5 white‐light illumination, the device of copolymer P12 produced the highest preliminary result having an open‐circuit voltage of 0.64 V, a short‐circuit current of 2.70 mA/cm2, a fill factor of 0.29, and an energy conversion efficiency of 0.51%. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4285–4304, 2008  相似文献   

19.
The reactivity of square planar palladium(II) and platinum(II) complexes in trans or cis configuration, namely trans or cis‐[dichlorobis(tributylphosphine)platinum(II)] and trans‐[dichlorobis(tributylphosphine)palladium(II)] with 1,1′‐bis(ethynyl) 4,4′‐biphenyl, DEBP, leading to π‐conjugated organometallic oligomeric and polymeric metallaynes, was investigated by a systematic variation of the reaction conditions. The formation of polymers and oligomers with defined chain length [? M(PBu3)2 (C?C? C6H4? C6H4? C?C? )]n (n = 3–10 for the oligomers, n = 20–50 for the polymers) depends on the configuration of the precursor Pt(II) and Pd(II) complexes, the presence/absence of the catalyst CuI, and the reaction time. A series of model reactions monitored by XPS, GPC, and NMR 31P spectroscopy showed the route to modulate the chain growth. As expected, the nature of the transition metal (Pt or Pd) and the molecular weight of the polymers markedly influence the photophysical characteristics of the polymetallaynes, such as optical absorption and emission behavior. Polymetallaynes with nanostructured morphology could be obtained by a simple casting procedure of polymer solutions. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3311–3329, 2007  相似文献   

20.
The polymerization of 4‐vinylpyridine was conducted in the presence of a cyclic trithiocarbonate (4,7‐diphenyl‐[1,3]dithiepane‐2‐thione) as a reversible addition–fragmentation transfer (RAFT) polymerization agent, and a multiblock polymer with narrow‐polydispersity blocks was prepared. Two kinds of multiblock copolymers of styrene and 4‐vinylpyridine, that is, (ABA)n multi‐triblock copolymers with polystyrene or poly(4‐vinylpyridine) as the outer blocks, were prepared with multiblock polystyrene or poly(4‐vinylpyridine) as a macro‐RAFT agent, respectively. GPC data for the original polymers and polymers cleaved by amine demonstrated the successful synthesis of amphiphilic multiblock copolymers of styrene and 4‐vinylpyridine via two‐step polymerization. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2617–2623, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号