首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Relativistic effects on the properties of small neutral Pdn species (n=1, 2, 4) and Pd2 have been examined for the first time at the all‐electron level by performing scalar‐relativistic and nonrelativistic density functional calculations using a gradient‐corrected density functional. Relativistic effects are found to be important: They lead to a contraction of bond lengths, increase of vibrational frequencies, and a significant enhancement of binding energies. While relativistic effects are quite uniform for several states of Pd4, they vary for the states examined for Pd2, leading to a change of ground state due to relativity. The calculated relativistic properties of Pd2 and Pd2 are in good agreement with available experimental data from mass spectrometry and photoelectron spectroscopy. For Pd4 three‐dimensional structures are found to be preferred to planar ones and many nearly isoenergetic isomers exist. ©1999 John Wiley & Sons, Inc. Int J Quant Chem 74: 405–416, 1999  相似文献   

2.
The geometric, spectroscopic, and electronic properties of neutral yttrium‐doped gold clusters AunY (n=1–9) are studied by far‐infrared multiple photon dissociation (FIR‐MPD) spectroscopy and quantum chemical calculations. Comparison of the observed and calculated vibrational spectra allows the structures of the isomers present in the molecular beam to be determined. Most of the isomers for which the IR spectra agree best with experiment are calculated to be the energetically most stable ones. Attachment of xenon to the AunY cluster can cause changes in the IR spectra, which involve band shifts and band splittings. In some cases symmetry changes, as a result of the attachment of xenon atoms, were also observed. All the AunY clusters considered prefer a low spin state. In contrast to pure gold clusters, which exhibit exclusively planar lowest‐energy structures for small sizes, several of the studied species are three‐dimensional. This is particularly the case for Au4Y and Au9Y, while for some other sizes (n=5, 8) the 3D structures have an energy similar to that of their 2D counterparts. Several of the lowest‐energy structures are quasi‐2D, that is, slightly distorted from planar shapes. For all the studied species the Y atom prefers high coordination, which is different from other metal dopants in gold clusters.  相似文献   

3.
The geometries, relative stabilities, and electronic properties of small rubidium‐doped silicon clusters RbSin (n = 1–12) have been systematically investigated using the density functional theory at the B3LYP/GENECP level. The optimized structures show that lowest‐energy isomers of RbSin are similar with the ground state isomers of pure Sin clusters and prefer the three‐dimensional for n = 3–12. The relative stabilities of RbSin clusters have been analyzed on the averaged binding energy, fragmentation energy, second‐order energy difference, and highest occupied molecular orbital‐lowest unoccupied molecular orbital energy gap. The calculated results indicate that the doping of Rb atom enhances the chemical activity of Sin frame and the magic number is RbSi2. The Mulliken population analysis reveals that the charges in the corresponding RbSin clusters transfer from the Rb atom to Si atoms. The partial density of states and chemical hardness are also discussed. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
Since gold clusters have mostly been studied theoretically by using DFT calculations, more accurate studies are of importance. Thus, small neutral and anionic gold clusters (Aun and Aun?, n=4–7) were investigated by means of coupled cluster with singles, doubles, and perturbative triple excitations [CCSD(T)] calculations with large basis sets, and some differences between DFT and CCSD(T) results are discussed. Interesting isomeric structures that have dangling atoms were obtained. Structures having dangling atoms appear to be stable up to n=4 for neutral gold clusters and up to n=7 for anionic clusters. The relative stabilities and electronic properties of some isomers and major structures are discussed on the basis of the CCSD(T) calculations. This accurate structure prediction of small gold clusters corresponding to experimental photoelectron spectral peaks is valuable in the field of atom‐scale materials science including nanocatalysts.  相似文献   

5.
CO adsorption on small cationic, neutral, and anionic (AlN)n (n = 1–6) clusters has been investigated using density functional theory in the generalized gradient approximation. Among various possible CO adsorption sites, an N on‐top (onefold coordinated) site is found to be the most favorable one, irrespective of the charge state of the clusters. The adsorption energies of CO on the anionic (AlN)nCO (n = 2–4) clusters are greater than those on the neutral and cationic complexes. The adsorption energies on the cationic and neutral complexes reflect the odd–even oscillations, and the adsorption energies of CO on the cationic (AlN)nCO (n = 5, 6) clusters are greater than those on the neutral and anionic complexes. The adsorption energies for the different charge states decrease with increasing cluster size. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

6.
Cationic silver‐doped silicon clusters, SinAg+ (n=6–15), are studied using infrared multiple photon dissociation in combination with density functional theory computations. Candidate structures are identified using a basin‐hopping global optimizations method. Based on the comparison of experimental and calculated IR spectra for the identified low‐energy isomers, structures are assigned. It is found that all investigated clusters have exohedral structures, that is, the Ag atom is located at the surface. This is a surprising result because many transition‐metal dopant atoms have been shown to induce the formation of endohedral silicon clusters. The silicon framework of SinAg+ (n=7–9) has a pentagonal bipyramidal building block, whereas the larger SinAg+ (n=10–12, 14, 15) clusters have trigonal prism‐based structures. On comparing the structures of SinAg+ with those of SinCu+ (for n=6–11) it is found that both Cu and Ag adsorb on a surface site of bare Sin+ clusters. However, the Ag dopant atom takes a lower coordinated site and is more weakly bound to the Sin+ framework than the Cu dopant atom.  相似文献   

7.
Density functional theory has been performed to investigate the interaction of H2 and Pdn clusters (n = 1–7). The local minima configurations for different H2 molecule approach modes towards Pdn clusters are presented. Our results show that in some cases H2 is physically adsorbed around Pd atom, and in other cases H2 is dissociated to be H atoms. Except for PdH2, Pdn clusters with H atoms dissociatively adsorbed are most stable. For these most stable PdnH2 clusters (n  2), the binding energy of hydrogen atom decreases as the number of Pd atom increases until n = 4, and when n  4, the binding energy almost keeps constant with the H atoms bound sites changing from Pd–Pd bonds to Pd triangle planes. Besides, the adsorption of H2 on other low-lying isomers of Pdn clusters is also discussed.  相似文献   

8.
Density functional theory (DFT) calculations within the framework of generalized gradient approximation have been used to systematically investigate the adsorption of nitric oxide (NO) molecule on neutral, cationic, and anionic Pdn (n = 1–5) clusters. NO coordinate to one Pd atom of the cluster by the end‐on mode, where the tilted end‐on structure is more favorable due to the additional electron in the π* orbital. On the contrary, in the neutral and cationic Pd2 system, NO coordinates to the bridge site of cluster preferably by the side‐on mode. Charge transfer between Pd clusters and NO molecule and the corresponding weakening of N? O bond is an essential factor for the adsorption. The N? O stretching frequency follow the order of cationic > neutral > anionic. Binding energy of NO on anionic clusters is found to be greater than those of neutral and cationic clusters. © 2015 Wiley Periodicals, Inc.  相似文献   

9.
The structures and relative stabilities of high‐spin n+1Aun?1Ag and nAun?1Ag+ (n = 2–8) clusters have been studied with density functional calculation. We predicted the existence of a number of previously unknown isomers. Our results revealed that all structures of high‐spin neutral or cationic Aun?1Ag clusters can be understood as a substitution of an Au atom by an Ag atom in the high‐spin neutral or cationic Aun clusters. The properties of mixed gold–silver clusters are strongly sized and structural dependence. The high‐spin bimetallic clusters tend to be holding three‐dimensional geometry rather than planar form represented in their low‐spin situations. Silver atom prefers to occupy those peripheral positions until to n = 8 for high‐spin clusters, which is different from its position occupied by light atom in the low‐spin situations. Our theoretical calculations indicated that in various high‐spin Aun?1Ag neutral and cationic species, 5Au3Ag, 3AuAg and 5Au4Ag+ hold high stability, which can be explained by valence bond theory. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

10.
The stability, infrared spectra and electronic structures of (ZrO2)n (n=3–6) clusters have been investigated by using density‐functional theory (DFT) at B3LYP/6‐31G* level. The lowest‐energy structures have been recognized by considering a number of structural isomers for each cluster size. It is found that the lowest‐energy (ZrO2)5 cluster is the most stable among the (ZrO2)n (n=3–6) clusters. The vibration spectra of Zr? O stretching motion from terminal oxygen atom locate between 900 and 1000 cm?1, and the vibrational band of Zr? O? Zr? O four member ring is obtained at 600–700 cm?1, which are in good agreement with the experimental results. Mulliken populations and NBO charges of (ZrO2)n clusters indicate that the charge transfers occur between 4d orbital of Zr atoms and 2p orbital of O atoms. HOMO‐LUMO gaps illustrate that chemical stabilities of the lowest‐energy (ZrO2)n (n=3–6) clusters display an even‐odd alternating pattern with increasing cluster size.  相似文献   

11.
We report on the structural, electronic, and magnetic properties of manganese‐doped silicon clusters cations, SinMn+ with n=6–10, 12–14, and 16, using mass spectrometry and infrared spectroscopy in combination with density functional theory computations. This combined experimental and theoretical study allows several structures to be identified. All the exohedral SinMn+ (n=6–10) clusters are found to be substitutive derivatives of the bare Sin+1+ cations, while the endohedral SinMn+ (n=12–14 and 16) clusters adopt fullerene‐like structures. The hybrid B3P86 functional is shown to be appropriate in predicting the ground electronic states of the clusters and in reproducing their infrared spectra. The clusters turn out to have high magnetic moments localized on Mn. In particular the Mn atoms in the exohedral SinMn+ (n=6–10) clusters have local magnetic moments of 4 μB or 6 μB and can be considered as magnetic copies of the silicon atoms. Opposed to other 3d transition‐metal dopants, the local magnetic moment of the Mn atom is not completely quenched when encapsulated in a silicon cage.  相似文献   

12.
We performed a comprehensive study of the size‐, shape‐, and composition‐dependent polarizabilities of SimCn (m, n = 1–4) clusters on the basis of the density‐functional‐based coupled perturbed Hartree–Fock calculations. We found better correlations between the polarizabilities and both the binding energies (Eb) and change in charge distribution (Δq) than the energy gaps. The α values exhibit overall decreasing and increasing trends with increases in the Eb and Δq values, respectively. For isomers with the same Eb values and different polarizabilities, Δq can well explain the difference in polarizabilities. The π‐electron delocalization effect is the best factor for understanding the shape‐dependence. For a given m/n value, the linear clusters have an obviously larger polarizability than both the prolate and compact clusters, irrespective of the cluster size. We fit a quantitative expression [α = A ? (A ? B) × exp(?k(m/n))] to describe the composition‐dependent polarizabilities. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
王宏  武海顺  贾建峰 《中国化学》2006,24(6):731-738
Structures and thermodynamic properties of the imidoboranes (HBNH)n (n=1-16) have been investigated theoretically at the B3LYP/6-31G^* level of theory. Needle-shaped oligomers that violate the isolated square rule were found to be more stable than cage isomers. The needle-shaped oligomer with n=16 was predicted to be exceptionally stable at low temperature, hexamer and octamer clusters dominated the gas phase at higher temperature. The highest oligomerization degree of the spontaneous cluster fomation has been estimated. It was concluded that generation of the gas phase (HBNH)n clusters with oligomerization degree n ≥24 was viable, making these species possible intermediates involved in the gas phase generation of BN nanoparticles.  相似文献   

14.
A modified adaptive immune optimization algorithm (AIOA) is designed for optimization of Cu–Au and Ag–Au bimetallic clusters with Gupta potential. Compared with homoatom clusters, there are homotopic isomers in bimetallic cluster, so atom exchange operation is presented in the modified AIOA. The efficiency of the algorithm is tested by optimization of CunAu38‐n (0 ≤ n ≤ 38). Results show that all the structures with the putative global minimal energies are successfully located. In the optimization of AgnAu55‐n (0 ≤ n ≤ 55) bimetallic clusters, all the structures with the reported minimal energies are obtained, and 36 structures with even lower potential energies are found. On the other hand, with the optimized structures of CunAu55‐n, it is shown that all 55‐atom Cu–Au bimetallic clusters are Mackay icosahedra except for Au55, which is a face‐centered cubic (fcc)‐like structure; Cu55, Cu12Au43, and Cu1Au54 have two‐shell Mackay icosahedral geometries with Ih point group symmetry. © 2009 Wiley Periodicals, Inc. J Comput Chem 2009  相似文献   

15.
Calculations in the framework of the density functional theory are performed to study the lowest‐energy isomers of coinage metal fluoride and chloride clusters (MnFn, MnCln, M = Cu, Ag, or Au, n = 1–6). For all calculated species starting from the trimers the most stable structures are found to be cyclic arrangements. However, planar rings are favored in the case of metal fluorides whereas metal chlorides prefer nonplanar cycles. Calculated bond lengths and infrared frequencies are compared with the available experimental data. The nature of the bonding, involving both covalent and ionic contributions, is characterized. The stability and the fragmentation are also investigated. Trimers are found to be particularly stable when considering the Gibbs free energies. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
Using gradient‐corrected density functional theory, we have comparatively studied the adsorption properties of diatomic molecules N2 and NO on vanadium clusters up to 13 atoms. Spontaneous dissociation is found for N2 adsorbing on Vn with n = 4–6, 12, and for NO with n = 3–12, respectively, whereas for the rest of the clusters, N2 (NO) molecularly adsorbs on the cluster for all the possible sites. The incoming N2 retains the magnetism of Vn except for V2 and V6 whose moments are quenched from 2 μB to zero. Consequently, the moments of VnN2 (n = 2–13) show even/odd oscillation between 0 and 1 μB. On the adsorption of NO, the magnetic moments of Vn with closed electronic shell are raised to 1 μB at n = 4, 8, and 10, and 3 μB at n = 12, whereas for open shell clusters, their magnetic moments increase for n = 5 and 9 and decrease for n = 2, 3, 5–7, 11, and 13 by 1 μB. These findings are rationalized by combinatory analysis from several aspects, for example, the geometry and stability of bare clusters, charge transfer induced by the adsorption, feature of frontier orbitals, and spin density distribution. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
The structures and relative stability of the maximum‐spin n+1Aun and nAu (n = 2–8) clusters have been determined by density‐functional theory. The structure optimizations and vibrational frequency analysis are performed with the gradient‐corrections of Perdew along with his 1981 local correlation functional, combined with SBKJC effective core potential, augmented in the valence basis set by a set of f functions. We predicted the existence of a number of previously unknown isomers. The energetic and electronic properties of the small high‐spin gold clusters are strongly dependent on sizes. The high‐spin clusters tend to holding three‐dimensional geometry rather than planar form preferred in low‐spin situations. In whole high‐spin Aun (n = 2–8) neutral and cationic species, 5Au4, 2Au, and 4Au are predicted to be of high stability, which can be explained by valence bond theory. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

18.
Density‐functional with generalized gradient approximation (GGA) for the exchange‐correlation potential has been used to calculate the energetically global‐minimum geometries and electronic states of NinAl (n = 2–8) neutral clusters. Our calculations predict the existence of a number of previously unknown isomers. All structures may be derived from a substitution of a Ni atom at marginal positions by an Al atom in the Nin+1 cluster. Aluminum atom remains on the surface of the geometrical configurations. Moreover, these species prefer to adopt three‐dimensional (3D) spacial forms at the smaller number of nickel atoms compared with the pure Nin+1 (n ≥ 3) configuration. Atomization energies per atom for NinAl (n = 2–8) have the same trend as the binding energies per atom for Nin (n = 3–9). The stabilization energies reveal that Ni5Al is the relatively most stable in this series. In comparison with the magnetic moment of pure metal nickel (0.6 μB), the average magnetic moment of Ni atom increases in Ni Al clusters except the Ni3Al. Moreover, except the case of Ni5Al, Ni average magnetic moment decreases when alloyed with Al atoms than that in pure Ni clusters, which originate the effective charge transferring from Al to Ni atoms. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

19.
The electronic and geometric structures, total and binding energies, first and second energy differences, harmonic frequencies, point symmetries, and highest occupied molecular orbital–lowest unoccupied molecular orbital (HOMO–LUMO) gaps of small and neutral Bn (n = 2–12) clusters have been investigated using density functional theory (DFT), B3LYP with 6‐311++G(d,p) basis set. Linear, planar, convex, quasi‐planar, three‐dimensional (3D) cage, and open‐cage structures have been found. None of the lowest energy structures and their isomers has an inner atom; i.e., all the atoms are positioned at the surface. Within this size range, the planar and quasi‐planar (convex) structures have the lowest energies. The first and the second energy differences are used to obtain the most stable sizes. A simple growth path is also discussed with the studied sizes and isomers. The results have been compared with previously available theoretical and experimental works. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

20.
Chiral nanosized confinements play a major role for enantioselective recognition and reaction control in biological systems. Supramolecular self‐assembly gives access to artificial mimics with tunable sizes and properties. Herein, a new family of [Pd2L4] coordination cages based on a chiral [6]helicene backbone is introduced. A racemic mixture of the bis‐monodentate pyridyl ligand L1 selectively assembles with PdII cations under chiral self‐discrimination to an achiral meso cage, cis‐[Pd2 L1P 2 L1M 2]. Enantiopure L1 forms homochiral cages [Pd2 L1P/M 4]. A longer derivative L2 forms chiral cages [Pd2 L2P/M 4] with larger cavities, which bind optical isomers of chiral guests with different affinities. Owing to its distinct chiroptical properties, this cage can distinguish non‐chiral guests of different lengths, as they were found to squeeze or elongate the cavity under modulation of the helical pitch of the helicenes. The CD spectroscopic results were supported by ion mobility mass spectrometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号