首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel amphiphilic biodegradable triblock copolymer (PGL‐PLA‐PGL) with polylactide (PLA) as hydrophobic middle block and poly(glutamic acid) (PGL) as hydrophilic lateral blocks was successfully synthesized by ring‐opening polymerization (ROP) of L ‐lactide (LA) and N‐carboxy anhydride (NCA) consecutively and by subsequent catalytic hydrogenation. The results of cell experiment of PGL‐PLA‐PGL suggested that PGL could improve biocompatibility of polyester obviously. The copolymer could form micelles of spindly shape easily in aqueous solution. The pendant carboxyl groups of the triblock copolymer were further activated with N‐hydroxysuccinimide and combined with a cell‐adhesive peptide GRGDSY. Incorporation of the oligopeptide further enhanced the hydrophilicity and led to formation of spherical micelles. PGL‐PLA‐PGL showed better cell adhesion and spreading ability than pure PLA and the GRGDSY‐containing copolymer exhibited even further improvement in cell adhesion and spreading ability, indicating that the copolymer could find a promising application in drug delivery or tissue engineering. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3218–3230, 2007  相似文献   

2.
A poly(D,L ‐lactide)–bromine macroinitiator was synthesized for use in the preparation of a novel biocompatible polymer. This amphiphilic diblock copolymer consisted of biodegradable poly(D,L ‐lactide) and 2‐methacryloyloxyethyl phosphorylcholine and was formed by atom transfer radical polymerization. Polymeric nanoparticles were prepared by a dialysis process in a select solvent. The shape and structure of the polymeric nanoparticles were determined by 1H NMR, atomic force microscopy, and ζ‐potential measurements. The results of cytotoxicity tests showed the good cytocompatibility of the lipid‐like diblock copolymer poly(2‐methacryloyloxyethyl phosphorylcholine)‐block‐poly(D,L ‐lactide). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 688–698, 2007  相似文献   

3.
This article describes the synthesis and characterization of new amphiphilic polymer conetworks containing hydrophilic poly(2,3‐dihydroxypropyl methacrylate) or poly(ethylene glycol) methacrylate (PEGMA) and hydrophobic polyisobutylene chains. This conetworks were prepared by a two‐step polymer synthesis. In the first step, a cationic copolymer of isobutylene and 3‐isopropenyl‐α,α‐dimethylbenzyl isocyanate (IDI) was prepared. The isocyanate groups of the IB‐IDI random copolymer were subsequently transformed in situ to methacrylate (MA) groups in reaction with 2‐hydroxyethyl methacrylate (HEMA). In the second step, the resulting MA‐multifunctional PIB‐based crosslinker, PIB(MA)n, with an average functionality of approximately four per chain, was copolymerized with 2,3‐dihydroxypropyl methacrylate or poly(ethylene glycol) methacrylate by radical mechanism in tetrahydrofuran giving rise to amphiphilic conetworks containing 11–60 mol % of DHPMA or 10–12 mol % of PEGMA. The synthesized conetworks were characterized with solid‐state 13C‐NMR spectroscopy and differential scanning calorimetry. The amphiphilic nature of the conetworks was proved by swelling in both water and n‐heptane. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4074–4081, 2007  相似文献   

4.
Biodegradable, amphiphilic, diblock poly(ε‐caprolactone)‐block‐poly(ethylene glycol) (PCL‐b‐PEG), triblock poly(ε‐caprolactone)‐block‐poly(ethylene glycol)‐block‐poly(ε‐caprolactone) (PCL‐b‐PEG‐b‐PCL), and star shaped copolymers were synthesized by ring opening polymerization of ε‐caprolactone in the presence of poly(ethylene glycol) methyl ether or poly(ethylene glycol) or star poly(ethylene glycol) and potassium hexamethyldisilazide as a catalyst. Polymerizations were carried out in toluene at room temperature to yield monomodal polymers of controlled molecular weight. The chemical structure of the copolymers was investigated by 1H and 13C NMR. The formation of block copolymers was confirmed by 13C NMR and DSC investigations. The effects of copolymer composition and molecular structure on the physical properties were investigated by GPC and DSC. For the same PCL chain length, the materials obtained in the case of linear copolymers are viscous whereas in the case of star copolymer solid materials are obtained with low Tg and Tm temperatures. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3975–3985, 2007  相似文献   

5.
Biodegradable, amphiphilic, four‐armed poly(?‐caprolactone)‐block‐poly(ethylene oxide) (PCL‐b‐PEO) copolymers were synthesized by ring‐opening polymerization of ethylene oxide in the presence of four‐armed poly(?‐caprolactone) (PCL) with terminal OH groups with diethylzinc (ZnEt2) as a catalyst. The chemical structure of PCL‐b‐PEO copolymer was confirmed by 1H NMR and 13C NMR. The hydroxyl end groups of the four‐armed PCL were successfully substituted by PEO blocks in the copolymer. The monomodal profile of molecular weight distribution by gel permeation chromatography provided further evidence for the four‐armed architecture of the copolymer. Physicochemical properties of the four‐armed block copolymers differed from their starting four‐armed PCL precursor. The melting points were between those of PCL precursor and linear poly(ethylene glycol). The length of the outer PEO blocks exhibited an obvious effect on the crystallizability of the block copolymer. The degree of swelling of the four‐armed block copolymer increased with PEO length and PEO content. The micelle formation of the four‐armed block copolymer was examined by a fluorescent probe technique, and the existence of the critical micelle concentration (cmc) confirmed the amphiphilic nature of the resulting copolymer. The cmc value increased with increasing PEO length. The absolute cmc values were higher than those for linear amphiphilic block copolymers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 950–959, 2004  相似文献   

6.
A new stratagem for the synthesis of amphiphilic graft copolymers of hydrophilic poly(ethylene oxide) as the main chain and hydrophobic polystyrene as the side chains is suggested. A poly(ethylene oxide) with pending 2,2,6,6‐tetramethylpiperidine‐1‐oxyls [poly(4‐glycidyloxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl‐co‐ethylene oxide)] was first prepared by the anionic ring‐opening copolymerization of ethylene oxide and 4‐glycidyloxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl, and then the graft copolymerization of styrene was completed with benzoyl peroxide as the initiator in the presence of poly(4‐glycidyloxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl‐co‐ethylene oxide). The polymerization of styrene was under control, and comblike, amphiphilic poly(ethylene oxide)‐g‐polystyrene was obtained. The copolymer and its intermediates were characterized with size exclusion chromatography, 1H NMR, and electron spin resonance in detail. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3836–3842, 2006  相似文献   

7.
New Y‐shaped (AB2‐type) amphiphilic copolymers of poly(ethylene glycol) (PEG) with poly(trimethylene carbonate) (PTMC), PEG‐b‐(PTMC)2, were successfully synthesized by the ring‐opening polymerization (ROP) of TMC with bishydroxy‐modified monomethoxy‐PEG (mPEG). First, a bishydroxy functional ROP initiator was synthesized by esterification of acryloyl bromide with mPEG, followed by Michael addition using excess diethanolamine. A series of Y‐shaped amphiphilic PEG‐(PTMC)2 block copolymers were obtained via ROP of TMC using this PEG with bishydroxyl end groups as macroinitiator and ZnEt2 as catalyst. The amphiphilic block copolymers with different compositions were characterized by gel permeation chromatography (GPC) and 1H NMR, and their molecular weight was measured by GPC. The results showed that the molecular weight of Y‐shaped copolymers increased with the increase of the molar ratio of TMC to mPEG‐(OH)2 initiator in feed while the PEG chain length was kept constant. The Y‐shaped copolymer mPEG‐(PTMC)2 could self‐assemble into micelles in aqueous medium and the critical micelle concentration values of the micelles decrease with increase in hydrophobic PTMC block length of mPEG‐(PTMC)2. The in vitro cytotoxicity and controlled drug release properties of the Y‐shaped amphiphilic block copolymers were also investigated. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 8131–8140, 2008  相似文献   

8.
The synthesis of three series of double hydrophilic block copolymers (DHBCs), consisting of poly(ethylene oxide) as the neutral water soluble block and a second polyelectrolyte block of variable chemistry, is described. The synthetic scheme involves the anionic polymerization of poly(ptert‐butoxystyrene‐b‐ethylene oxide) (PtBOS‐PEO) amphiphilic block copolymer precursors followed by the acidic hydrolysis of the hydrophobic poly(ptert‐butoxystyrene) (PtBOS) block to an annealed anionic polyelectrolyte poly(p‐hydroxystyrene) (PHOS) block. The PHOS block was subsequently transformed into a high charge density annealed cationic polyelectrolyte namely poly[3,5‐bis(dimethylaminomethylene) hydroxystyrene] (NPHOS), via aminomethylation. Finally, the NPHOS block was transformed into a quenched polyelectrolyte, namely quaternized poly[3,5‐bis(dimethylaminomethylene) hydroxystyrene] (QNPHOS) block by reaction with CH3I. The solution properties of the different series of the above block polyelectrolyte copolymers have been investigated using static, dynamic and electrophoretic light scattering, turbidimetry, and fluorescence spectroscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5790–5799, 2007  相似文献   

9.
A novel amphiphilic poly(ethylene glycol)‐block‐poly(γ‐cholesterol‐L ‐glutamate) (mPEG–PCHLG) diblock copolymer has been synthesized. The mPEG–PCHLG copolymer has good biocompatibility and low toxicity. The mPEG–PCHLG copolymers could aggregate into nanoparticles with PCHLG blocks as the hydrophobic core and PEG blocks as the hydrophilic shell through emulsion solvent evaporation method. The copolymers were characterized by nuclear magnetic resonance spectroscopy, mass spectrum, Fourier transform infrared spectroscopy, and gel permeation chromatography. The particle sizes, size distributions, and zeta potentials of nanoparticles can also be determined by dynamic light scattering and transmission electron microscopy. This work provides a new and facile approach to prepare amphiphilic block copolymer nanoparticles with controllable performances. This novel copolymer may have potential applications in drug delivery and bioimaging applications.© 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
Redox‐responsive core cross‐linked (CCL) micelles of poly(ethylene oxide)‐b‐poly(furfuryl methacrylate) (PEO‐b‐PFMA) block copolymers were prepared by the Diels‐Alder click‐type reaction. First, the PEO‐b‐PFMA amphiphilic block copolymer was synthesized by the reversible addition‐fragmentation chain transfer polymerization. The hydrophobic blocks of PFMA were employed to encapsulate the doxorubicin (DOX) drug, and they were cross‐linked using dithiobismaleimidoethane at 60 °C without any catalyst. Under physiological circumstance, the CCL micelles demonstrated the enhanced structural stability of the micelles, whereas dissociation of the micelles took place rapidly through the breaking of disulfide bonds in the cross‐linking linkages under reduction environment. The core‐cross‐linked micelles showed fine spherical distribution with hydrodynamic diameter of 68 ± 2.9  nm. The in vitro drug release profiles presented a slight release of DOX at pH 7.4, while a significant release of DOX was observed at pH 5.0 in the presence of 1,4‐dithiothreitol. MTT assays demonstrated that the block copolymer did not have any practically cytotoxicity against the normal HEK293 cell line while DOX‐loaded CCL micelles exhibited a high antitumor activity towards HepG2 cells. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3741–3750  相似文献   

11.
The first‐ and second‐generation well‐defined thermoresponsive amphiphilic linear–dendritic diblock copolymers based on hydrophilic linear poly(N‐vinylcaprolactam) and hydrophobic dendritic aromatic polyamide have been synthesized via reversible addition fragmentation chain transfer polymerization of N‐vinylcaprolactam by employing dendritic chain‐transfer agents possessing a single dithiocarbamate moiety at the focal point. These linear–dendritic copolymers exhibit reversible temperature‐dependent phase transition behaviors in aqueous solution as characterized by turbidity measurements using UV–vis spectroscopy. Their lower critical solution temperatures depend on the generation of the dendritic aromatic polyamides and the concentrations of the copolymer solutions. These amphiphilic copolymers are able to form nanospherical micelles in the aqueous solution as revealed by fluorescent spectroscopy, dynamic light scattering, and transmission electron microscope (TEM). The core–shell structure of micelles has been proved by 1H NMR analyses of the micelles in D2O. The micelles loaded with indomethacin as a model drug showed high‐drug loading capacity and thermoresponsive drug release behavior. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3240–3250  相似文献   

12.
Well‐defined star‐shaped hydrophobic poly(ε‐caprolactone) (PCL) and hydrophilic poly(ethylene glycol) (PEG) amphiphilic conetworks (APCNs) have been synthesized via the combination of ring opening polymerization (ROP) and click chemistry. Alkyne‐terminated six arm star‐shaped PCL (6‐s‐PCLx‐C?CH) and azido‐terminated PEG (N3‐PEG‐N3) are characterized by 1H NMR and FT‐IR. The swelling degree of the APCNs is determined both in water and organic solvent. This unique property of the conetworks is dependent on the nanophase separation of hydrophilic and hydrophobic phases. The morphology and thermal behaviors of the APCNs are investigated by SEM and DSC respectively. The biocompatibility is determined by water soluble tetrazolium salt reagents (WST‐1) assay, which shows the new polymer networks had good biocompatibility. Through in vitro release of paclitaxel (PTX) and doxorubicin (DOX), the APCNs is confirmed to be promising drug depot materials for sustained hydrophobic and hydrophilic drugs. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 407–417  相似文献   

13.
A successive method for preparing novel amphiphilic graft copolymers with a hydrophilic backbone and hydrophobic side chains was developed. An anionic copolymerization of two bifunctional monomers, namely, allyl methacrylate (AMA) and a small amount of glycidyl methacrylate (GMA), was carried out in tetrahydrofuran (THF) with 1,1‐diphenylhexyllithium (DPHL) as the initiator in the presence of LiCl ([LiCl]/[DPHL]0 = 2), at −50 °C. The copolymer poly(AMA‐co‐GMA) thus obtained possessed a controlled molecular weight and a narrow molecular weight distribution (Mw /Mn = 1.08–1.17). Without termination and polymer separation, a coupling reaction between the epoxy groups of this copolymer and anionic living polystyrene [poly(St)] at −40 °C generated a graft copolymer with a poly(AMA‐co‐GMA) backbone and poly(St) side chains. This graft copolymer was free of its precursors, and its molecular weight as well as its composition could be well controlled. To the completed coupling reaction solution, a THF solution of 9‐borabicyclo[3.3.1]nonane was added, and this was followed by the addition of sodium hydroxide and hydrogen peroxide. This hydroboration changed the AMA units of the backbone to 3‐hydroxypropyl methacrylate, and an amphiphilic graft copolymer with a hydrophilic poly(3‐hydroxypropyl methacrylate) backbone and hydrophobic poly(St) side chains was obtained. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1195–1202, 2000  相似文献   

14.
Amphiphilic polymer conetworks consisting of hydrophilic poly[2‐(dimethylamino)ethyl methacrylate], poly(N‐isopropylacrylamide), or poly(N,N‐dimethylacrylamide) and hydrophobic polyisobutylene chains were synthesized with a novel two‐step procedure. In the first step, a methacrylate‐multifunctional polyisobutylene crosslinker was prepared by the cationic copolymerization of isobutylene with 3‐isopropenyl‐α,α‐dimethylbenzyl isocyanate. In the second step, the methacrylate‐multifunctional polyisobutylene crosslinker, with a number‐average molecular weight of 8200 and an average functionality of approximately 4 per chain, was copolymerized radically with 2‐(dimethylamino)ethyl methacrylate, N‐isopropylacrylamide, or N,N‐dimethylacrylamide into transparent amphiphilic conetworks containing 42–47 mol % hydrophilic monomer. The synthesized conetworks were characterized with solid‐state 13C NMR spectroscopy and differential scanning calorimetry. The amphiphilic nature of the conetworks was proved by swelling in both water and n‐heptane. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6378–6384, 2006  相似文献   

15.
A well‐defined starlike amphiphilic graft copolymer bearing hydrophilic poly(acrylic acid) backbones and hydrophobic polystyrene side chains was synthesized by successive atom transfer radical polymerization followed by the hydrolysis of poly‐(methoxymethyl acrylate) backbone. A grafting‐from strategy was employed for the synthesis of a graft copolymer with narrow molecular weight distribution. Hydrophobic polystyrene side chains were connected to the backbones through stable C? C bonds. The poly(methoxymethyl acrylate) backbones can be easily hydrolyzed with HCl without affecting the hydrophobic polystyrene side chains. This kind of amphiphilic graft copolymer can form stable sphere micelles in water. The sizes of the micelles were dependent on the ionic strength and pH value. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3687–3697, 2007  相似文献   

16.
This article describes the synthesis and characterization of new amphiphilic polymer conetworks containing hydrophilic poly(methacrylic acid) (PMAA) or poly(acrylic acid) (PAA) and hydrophobic polyisobutylene (PIB) chains. These conetworks were prepared by a two‐step polymer synthesis. In the first step, a cationic copolymer of isobutylene (IB) and 3‐isopropenyl‐α,α‐dimethylbenzyl isocyanate (IDI) was prepared. The isocyanate groups of the IB–IDI random copolymer were subsequently transformed in situ to methacrylate (MA) groups in reaction with 2‐hydroxyethyl methacrylate (HEMA). In the second step, the resulting MA‐multifunctional PIB‐based crosslinker, PIB(MA)n, with an average functionality of approximately four methacrylic groups per chain, was copolymerized with methacrylic acid (MAA) or acrylic acid (AA) by radical mechanism in tetrahydrofuran giving rise to amphiphilic conetworks containing 31–79 mol % of MAA or 26–36 mol % of AA. The synthesized conetworks were characterized with solid‐state 13C‐NMR spectroscopy and differential scanning calorimetry. The amphiphilic nature of the conetworks was proven by swelling in both aqueous media with low and high pH and n‐heptane. The effect of varying pH on the swelling behavior of the synthesized conetworks is presented. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1284–1291, 2009  相似文献   

17.
The microwave assisted amidation of poly(ethylene‐co‐acrylic acid) (PEAA) with 2‐(2‐aminoethoxy)ethanol was performed to yield a hydroxy functionalized poly(ethylene) based copolymer (PEAAOH) in a single step. PEAAOH was used as a polyinitiator for the ring‐opening polymerization of ε‐caprolactone. The obtained graft copolymers were studied via 1H NMR spectroscopy, gel permeation chromatography, differential scanning calorimetry, polarized optical microscopy, and scanning electron microscopy. Microscopy methods show a crystallization behavior of banded spherulites. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3659–3667, 2007  相似文献   

18.
A series of novel temperature‐ and pH‐responsive graft copolymers, poly(L ‐glutamic acid)‐g‐poly(N‐isopropylacrylamide), were synthesized by coupling amino‐semitelechelic poly(N‐isopropylacrylamide) with N‐hydroxysuccinimide‐activated poly(L ‐glutamic acid). The graft copolymers and their precursors were characterized, by ESI‐FTICR Mass Spectrum, intrinsic viscosity measurements and proton nuclear magnetic resonance (1H NMR). The phase‐transition and aggregation behaviors of the graft copolymers in aqueous solutions were investigated by the turbidity measurements and dynamic laser scattering. The solution behavior of the copolymers showed dependence on both temperature and pH. The cloud point (CP) of the copolymer solution at pH 5.0–7.4 was slightly higher than that of the solution of the PNIPAM homopolymer because of the hydrophilic nature of the poly(glutamic acid) (PGA) backbone. The CP markedly decreased when the pH was lowered from 5 to 4.2, caused by the decrease in hydrophilicity of the PGA backbone. At a temperature above the lower critical solution temperature of the PNIPAM chain, the copolymers formed amphiphilic core‐shell aggregates at pH 4.5–7.4 and the particle size was reduced with decreasing pH. In contrast, larger hydrophobic aggregates were formed at pH 4.2. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4140–4150, 2008  相似文献   

19.
This article discusses an effective route to prepare amphiphilic diblock copolymers containing a poly(ethylene oxide) block and a polyolefin block that includes semicrystalline thermoplastics, such as polyethylene and syndiotactic polystyrene (s‐PS), and elastomers, such as poly(ethylene‐co‐1‐octene) and poly(ethylene‐co‐styrene) random copolymers. The broad choice of polyolefin blocks provides the amphiphilic copolymers with a wide range of thermal properties from high melting temperature ~270 °C to low glass‐transition temperature ~?60 °C. The chemistry involves two reaction steps, including the preparation of a borane group‐terminated polyolefin by the combination of a metallocene catalyst and a borane chain‐transfer agent as well as the interconversion of a borane terminal group to an anionic (? O?K+) terminal group for the subsequent ring‐opening polymerization of ethylene oxide. The overall reaction process resembles a transformation from the metallocene polymerization of α‐olefins to the ring‐opening polymerization of ethylene oxide. The well‐defined reaction mechanisms in both steps provide the diblock copolymer with controlled molecular structure in terms of composition, molecular weight, moderate molecular weight distribution (Mw/Mn < 2.5), and absence of homopolymer. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3416–3425, 2002  相似文献   

20.
The spontaneous hydrogel formation of a sort of biocompatible and biodegradable amphiphilic block copolymer in water was observed, and the underlying gelling mechanism was assumed. A series of ABA‐type triblock copolymers [poly(D,L ‐lactic acid‐co‐glycolic acid)‐b‐poly(ethylene glycol)‐b‐poly(D,L ‐lactic acid‐co‐glycolic acid)] and different derivatives end‐capped by small alkyl groups were synthesized, and the aqueous phase behaviors of these samples were studied. The virgin triblock copolymers and most of the derivatives exhibited a temperature‐dependent reversible sol–gel transition in water. Both the poly(D,L ‐lactic acid‐co‐glycolic acid) length and end group were found to significantly tune the gel windows in the phase diagrams, but with different behaviors. The critical micelle concentrations were much lower than the associated critical gel concentrations, and an intact micellar structure remained after gelation. A combination of various measurement techniques confirmed that the sol–gel transition with an increase in the temperature was induced not simply via the self‐assembly of amphiphilic polymer chains but also via the further hydrophobic aggregation of micelles resulting in a micelle network due to a large‐scale self‐assembly. The coarsening of the micelle network was further suggested to account for the transition from a transparent gel to an opaque gel. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1122–1133, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号