首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Syntheses, crystal structures and thermal behavior of two new hydrated cerium(III) sulfates are reported, Ce2(SO4)3·4H2O ( I ) and β‐Ce2(SO4)3·8H2O ( II ), both forming three‐dimensional networks. Compound I crystallizes in the space group P21/n. There are two non‐equivalent cerium atoms in the structure of I , one nine‐ and one ten‐fold coordinated to oxygen atoms. The cerium polyhedra are edge sharing, forming helically propagating chains, held together by sulfate groups. The structure is compact, all the sulfate groups are edge‐sharing with cerium polyhedra and one third of the oxygen atoms, belonging to sulfate groups, are in the S–Oμ3–Ce2 bonding mode. Compound II constitutes a new structure type among the octahydrated rare‐earth sulfates which belongs to the space group Pn. Each cerium atom is in contact with nine oxygen atoms, these belong to four water molecules, three corner sharing and one edge sharing sulfate groups. The crystal structure is built up by layers of [Ce(H2O)4(SO4)]nn+ held together by doubly edge sharing sulfate groups. The dehydration of II is a three step process, forming Ce2(SO4)3·5H2O, Ce2(SO4)3·4H2O and Ce2(SO4)3, respectively. During the oxidative decomposition of the anhydrous form, Ce2(SO4)3, into the final product CeO2, small amount of CeO(SO4) as an intermediate species was detected.  相似文献   

2.
A novel structure type of an acidic rare‐earth sulfate, hexa­potassium cerium dihydrogensulfate tetra­sulfate monohydrate, is reported. The crystal is twinned, mimicking tetra­gonal symmetry. The CeIV atom is nine‐coordinate, connecting to one corner‐sharing and four edge‐sharing sulfate groups. One of the potassium ions is disordered over two general positions. The compound is unique as it contains rare‐earth monomers, [Ce(HSO4)(SO4)4]5−. The structure is composed of these monomers, water mol­ecules, discrete hydrogensulfate ions and potassium ions held together by ionic inter­actions. There are two types of alternating layers in the structure, with compositions [K4Ce(HSO4)(SO4)4] and [K2(HSO4)(H2O)]+.  相似文献   

3.
Dicerium(IV) tetrachromate(VI) dihydrate, Ce(CrO4)4·2H2O, has been prepared from an acidic aqueous solution at room temperature. Its novel crystal structure, which was solved from single‐crystal X‐ray diffraction data, is built from isolated CrO4 tetrahedra and isolated Ce(O,H2O)n (n = 8 and 9) polyhedra. All atoms are in general positions. The mean Ce—O and Cr—O bond lengths are 2.358 and 1.651 Å, respectively. Comparisons are drawn with the structure of CeIV(CrO4)2·2H2O.  相似文献   

4.
Single crystals of K2Cu5Cl8(OH)4·2H2O were grown using hydrothermal techniques. The compound is monoclinic with a = 11.6424(11), b = 6.5639(4), c = 11.7710(10)Å, β = 91.09(1)°, V = 899.4(2)Å3, space group P21/c, Z = 2. The crystal structure was determined using single crystal X‐ray diffraction data and refined to a residual of R(|F|) = 0.025 for 1208 independent observed reflections with I > 2σ(I). Two out of three crystallographically independent Cu atoms are coordinated to four near hydroxyl groups or chlorine atoms and two more distant Cl atoms, giving an octahedrally Jahn‐Teller distorted (4+2)‐configuration. For the remaining third copper cation a square‐planar coordination can be found. Edge‐sharing of the octahedra results in the formation of kagome‐type sheets parallel to (100). The octahedral layers are decorated on both sides by planar [Cu(OH)2Cl2]‐units around the third Cu atom. The K atoms are located between adjacent sheets and are surrounded by six Cl atoms as well as two water molecules. The coordination polyhedra about the K‐atoms can be described as distorted bicapped trigonal prisms. Additional linkage is provided by intra‐ as well as inter‐layer hydrogen bonds (O—H···Cl, O—H···O).  相似文献   

5.
The crystal structures of Na2Mg3(OH)2(SO4)3 · 4H2O and K2Mg3(OH)2(SO4)3 · 2H2O, were determined from conventional laboratory X‐ray powder diffraction data. Synthesis and crystal growth were made by mixing alkali metal sulfate, magnesium sulfate hydrate, and magnesium oxide with small amounts of water followed by heating at 150 °C. The compounds crystallize in space group Cmc21 (No. 36) with lattice parameters of a = 19.7351(3), b = 7.2228(2), c = 10.0285(2) Å for the sodium and a = 17.9427(2), b = 7.5184(1), c = 9.7945(1) Å for the potassium sample. The crystal structure consists of a linked MgO6–SO4 layered network, where the space between the layers is filled with either potassium (K+) or Na+‐2H2O units. The potassium‐bearing structure is isostructural to K2Co3(OH)2(SO4)3 · 2(H2O). The sodium compound has a similar crystal structure, where the bigger potassium ion is replaced by sodium ions and twice as many water molecules. Geometry optimization of the hydrogen positions were made with an empirical energy code.  相似文献   

6.
Concentrated aqueous solutions of strontium chloride and barium chloride, respectively, allow on addition of the potassium salt of tetrathiosquarate, K2C4S4·H2O, the isolation of the earth alkaline salts SrC4S4·4 H2O ( 1 ) and Ba4K2(C4S4)5·16 H2O ( 2 ), both as dark red crystals. The crystal structure determinations ( 1 : orthorhombic, Pnma, a = 8.149(1), b = 12.907(2), c = 10.790(2) Å, Z = 4; 2 : orthorhombic, Pbca, a = 15.875(3), b = 21.325(5), c = 16.119(1) Å, Z = 4) show the presence of C4S42− ions with only slightly distorted D4h symmetry having average C–C and C–S bond lengths of 1.41Å and 1.681Å for 1 and 1.450Å and 1.657Å for 2 . The structure of 1 contains concatenated edge‐sharing Sr(H2O)6S2 polyhedra. The Sr2+ ions are in eight‐fold coordination with Sr–O distances of 2.50–2.72Å and Sr–S distances of 3.21Å, (C4S4)2− acts as a chelating ligand towards Sr2+. The structure is closely related to the previously reported Ca2+ containing analogue, which is of lower symmetry belonging to the monoclinic crystal system. A supergroup‐subgroup relation between the space groups of both structures is present. The structure of 2 is made up of Ba2+ and K+ ions in eight and nine‐fold coordination by H2O molecules and (C4S4)2− ions which act as chelating ligands towards one cation and bridging between two cations. The coordination polyhedra of the cations are connected by common edges and corners in two dimensions to layers which are connected by tetrathiosquarate ions to a three‐dimensional network. The infrared and Raman spectra show bands typical for the molecular building units of the two compounds.  相似文献   

7.
The calcium salts Ca2P2O6 · 2H2O ( 1 ) and [Ca(H2O)3(H2P2O6)] · 0.5(C12H24O6) · H2O ( 2 ) were prepared and structurally characterized by single‐crystal X‐ray diffraction. Compound 1 crystallizes in the orthorhombic space group Pbca and compound 2 in the monoclinic space group P21/n. The crystal structure of compound 1 consists of chains of edge‐sharing [CaO7] polyhedra linked by hypodiphosphate(IV) anions to form a three‐dimensional network. The crystal structure of compound 2 consists of alternated layers of crown ether and water molecules and respective ionic units. Within the layers of ionic units the Ca2+ cations are octahedrally coordinated by three monodentate dihydrogenhypodiphosphate(IV) anions and three water molecules. The IR/Raman spectra of the title compounds were recorded and interpreted, especially with respect to the [P2O6]4– and [H2P2O6]2– groups. The phase purity of 2 was verified by powder diffraction measurements.  相似文献   

8.
The orange cerium‐niobium‐oxysulfide Ce3NbO4S3 was synthesized by the solid state reaction of CeO2, Ce‐metal, Nb2O5 and sulfur at 1100 °C. The crystal structure has orthorhombic symmetry (space group Pbam, a = 7.055(1), b = 14.571(3), c = 7.627(2) Å, Z = 4) and contains isolated [Nb2S4O6]10− ions consisting of two strongly distorted, edge sharing NbO3SS2/2 octahedra. Niobium is connected to three oxygen and three sulfur atoms. The cerium atoms are eightfold coordinated by oxygen and sulfur atoms. Certain oxygen and sulfur atoms are not connected to niobium, but exclusively surrounded by cerium. By connecting these cation polyhedra, one recognizes layers of polycations perpendicular to the c‐axis. The magnetic susceptibility shows Curie‐Weiss behavior with an effective magnetic moment μeff = 2.63(1) μB/Ce in agreement with Ce3+. A Weiss‐constant θp = –12(1) K indicates weak antiferromagnetic coupling. No magnetic ordering was detected above 2 K.  相似文献   

9.
The title compound, disodium cerium pentanitrate monohydrate, was synthesized from a nitric acid solution of Ce(NO3)3·6H2O and NaNO3, and its structure has been determined from single‐crystal X‐ray diffraction data. The structure is built from isolated chains of irregular icosahedral [Ce(NO3)6]3? anions. Na atoms and water mol­ecules are located between the chains. The Na coordination polyhedra, in the form of a square antiprism or a monocapped square antiprism, share common vertices and contribute to the formation of a three‐dimensional network. Ten nitrate groups act as bridging ligands.  相似文献   

10.
Single Crystals of the Cerium(III) Borosilicate Ce3[BSiO6][SiO4] Colorless, lath‐shaped single crystals of Ce3[BSiO6]‐ [SiO4] (orthorhombic, Pbca; a = 990.07(6), b = 720.36(4), c = 2329.2(2) pm, Z = 8) were obtained in attempts to synthesize fluoride borates with trivalent cerium in evacuated silica tubes by reaction of educt mixtures of elemental cerium, cerium dioxide, cerium trifluoride, and boron sesquioxide (Ce, CeO2, CeF3, B2O3; molar ratio 3 : 1 : 3 : 3) in fluxing CsCl (700 °C, 7 d) with the glass wall. The crystal structure contains eight‐ (Ce1) and ninefold coordinated Ce3+ cations (Ce2 and Ce3) surrounded by oxygen atoms. Charge balance is achieved by both discrete borosilicate ([BSiO6]5– ≡ [O2BOSiO3]5–) and ortho‐silicate anions ([SiO4]4–). The former consists of a [BO3] triangle linked to a [SiO4] tetrahedron by a single vertex. The anions form layers in [001] direction alternatingly built up from [BSiO6]5– and [SiO4]4– groups while Ce3+ cations are located in between.  相似文献   

11.
The new intermetallic cerium compound Ce2RuZn4 was synthesized from the elements in a sealed tantalum tube in a water‐cooled sample chamber of an induction furnace. Ce2RuZn4 crystallizes with a new structure type: P4/nmm, Z = 2, a = 719.6(1), c = 520.2(1) pm, wR2 = 0.0816, 273 F2 values and 15 variables. The structure contains two crystallographically independent cerium atoms: Ce1 with CN 16 (12 Zn + 4 Ce) and Ce2 with CN 14 (2 Ru + 8 Zn + 4 Ce). Based on the interatomic distances the two sites can be assigned to trivalent Ce1 and intermediate valent Ce2. The trivalent‐intermediate valent cerium ordering is underlined by magnetic susceptibility measurements. Ce2RuZn4 shows modified Curie‐Weiss behaviour in the temperature range 10–290 K with an experimental magnetic moment of 2.57(1) μB per formula unit. Thus only half of the cerium atoms are trivalent in Ce2RuZn4. A remarkable feature of the Ce2RuZn4 structure are short Ce2–Ru distances of 260 pm. The crystal chemistry of Ce2RuZn4 is discussed.  相似文献   

12.
The crystal structure of potassium cerium(III) bis­(sulfate) monohydrate, KCe(SO4)2·H2O, is built up from irregular independent SO4 tetra­hedra, CeO9 polyhedra in the form of distorted tricapped trigonal prisms and K+ ions. Hydrogen bonding between the free water mol­ecule and sulfate groups supplement the ionic bonds characteristic of the rest of the structure.  相似文献   

13.
Tricobalt (II)-dihydroxidesulfate-dihydrate, Co3(OH)2(SO4)2 · 2H2O, is orthorhombic: a = 7.21, b = 9.77, c = 12.86 Å, V = 905.9 Å3, space group D-Pbcm with four formula units per cell. The atomic positions have been determined by threedimensional Patterson and Fourier synthesis and full-matrix least-squares refinement of single crystal X-ray diffraction data. The structure shows infinite chains [001] of Co? O octahedra sharing one edge with each other. These chains are linked together by alternating SO4 tetrahedra and additional Co? O octahedra, thus giving rise to a three-dimensional network of polyhedra. There is no similarity to the well known layer structures of most hydroxide salts of divalent metals. The SO4 tetrahedra are regular while the Co? O octahedra show considerable distortion. The water molecule is coordinated to one Co atom and bonded to sulfate oxygen by two weak hydrogen bridges.  相似文献   

14.
The title compound, tri­ammonium cis‐di­aqua‐cis‐dioxo‐trans‐disulfatovanadate 1.5‐hydrate, was obtained by oxidizing VIV to VV in a 2 M sulfuric acid solution of vanadyl­ sulfate and adding ammonium sulfate. Here, the V atom is sandwiched by two sulfate groups by corner‐sharing to form a discrete [VO2(SO4)2(OH2)2]3? anion. The water mol­ecules occupy cis positions in the equatorial plane of the vanadium octahedron.  相似文献   

15.
The crystal structure of Ce(IO3)3 consists of one‐dimensional chains of edge‐sharing CeO9 polyhedra which are crosslinked into two‐dimensional layers through bridging IO3 groups. The layers are held together via long I⋯O contacts, resulting in an extended three‐dimensional network. The I—O bond distances and O—I—O angles are normal, lying in the ranges 1.806 (4)–1.846 (4) Å and 89.9 (2)–100.9 (2)°, respectively. The three crystallographically independent iodate groups all show different coordination modes.  相似文献   

16.
Two supramolecular architectures, [Mn(3‐bpd)2(NCS)2(H2O)2]·2H2O ( 1 ) and {[Mn(bpe)(NCS)2(H2O)2]·(3‐bpd)·(bpe)·H2O}n ( 2 ) [bpe = 1,2‐bis(4‐pyridyl)ethylene and 3‐bpd = 1,4‐bis(3‐pyridyl)‐2,3‐diaza‐1,3‐butadiene] have been synthesized and characterized by spectroscopic, elemental and single crystal X‐ray diffraction analyses. Compound 1 crystallizes in the monoclinic system, space group P21/c, with chemical formula C26H28Mn N10O4S2, a = 9.1360(6), b = 9.7490(6), c = 17.776(1) Å, β = 93.212(1)°, and Z = 2 while compound 2 crystallizes in the orthorhombic system, space group P212121, with chemical formula C38H36Mn1N10O3S2, a = 14.1902(6), b = 15.4569(7), c = 18.2838(8) Å, α = β = γ = 90°, and Z = 4. Structural determination reveals that the coordination geometry at Mn(II) in compound 1 or 2 is a distorted octahedral which consists of two nitrogen donors of two NCS?ligands, two oxygen donors of two water molecules, and two nitrogen donors of two 3‐bpd ligands for 1 and two dpe ligands for 2 , respectively. The two 3‐bpd ligands in 1 adopt a monodentate binding mode and the dpe in 2 adopts a bismonodentate bridging mode to connect the Mn(II) ions forming a 1D chain‐like coordination polymer. Both the π‐π stacking interactions between the coordinated and the free pyridyl‐based ligands and intermolecular hydrogen bonds among the coordinated and the crystallized water molecules and the free pyridyl‐based ligands play an important role in construction of these 3D supramolecular architectures.  相似文献   

17.
Using hydrothermal methods, two manganese arsenates have been synthesized and characterized by single crystal X‐ray diffraction. The products Mn5(AsO4)2(HAsO4)2 ?4H2O ( 1 ) and Mn2AsO4(OH) ( 2 ), the Mn end‐members of the minerals villyaellenite and sarkinite, respectively, have been obtained (crystal data 1 : monoclinic, C2/c, a = 18.109(4), b = 9.332(2), c = 9.809(2) Å, β = 96.172(4)?, Z = 4; 2 : monoclinic, P21/c, a = 10.219(2), b = 13.613(2), c = 12.780(2) Å, β = 108.834(2)?, Z = 16). In both compounds a three‐dimensional framework of edge‐sharing MnO polyhedra is observed. Based on the availability of the all Mn2containing form of villyaellenite ( 1 ), the ordering scheme of the impurity cations of the natural samples could be confirmed. Magnetic susceptibility measurements of 1 indicate the presence of high‐spin Mn2+ ions. The comparison of the data on sarkinite ( 2 ) with the data obtained from the natural sample indicates that the mineral has either a very high Mn content, or an absence of impurity cation ordering.  相似文献   

18.
A new organic templated lanthanum sulfate [C4N3H16][La(SO4)3(H2O)] ( 1 ) has been solvothermally synthesized by using n‐butanol as solvent. The colorless block crystals were characterized by IR, TGA, ICP, and XRD. The structure was determined by single‐crystal X‐ray diffraction: Monoclinic, P21/c, a = 10.8878(19), b = 15.478(3), c = 9.9639(18) Å, β = 114.062(2)°, V=1533.2(5) Å3, Z = 4]. Crystal structure analysis shows that the one dimensional chain of 1 consists of the LaO9 polyhedra and the sulfate groups. Coordination water molecules link adjacent chains by using hydrogen bonds to generate 2D layers, whereas the organic amines are inserted between the layers. The formation of 1 demonstrates that solvents play an important role during the synthesis.  相似文献   

19.
Synthesis, Structure, and Properties of Some Selenidostannates. II. [(C2H5)3NH]2Sn3Se7 · 0,25 H2O and [(C3H7)2NH2]4Sn4Se10 · 4 H2O The new selenidostannate hydrates [(C2H5)3NH]2Sn3Se7 · 0.25 H2O ( I ) and [(C3H7)2NH2]4Sn4Se10 · 4 H2O ( II ) were synthesized from an aqueous suspension of triethylammonium (tripropylammonium), tin, selenium I and in addition sulfur II at 130 °C. I crystallizes at ambient temperature in the monoclinic space group P21/n (a = 2069,3(4) pm, b = 1396,6(3) pm, c = 2342,8(5) pm, β = 114,68(3)°, Z = 8) and is characterized by two different anions, chains from edge‐sharing [Se3Se7]2– units and nets from trigonal SnSe5 bipyramids. II crystallizes at ambient temperature in the tetragonal space group I41/amd (a = 2150,0(3) pm, c = 1174,4(2) pm, Z = 4) and contains adamantane like [Sn4Se10]4–‐cages. The UV‐VIS spectra of the selenidostannates demonstrate that the absorption edges red shift as the dimensionality of the compounds is increased.  相似文献   

20.
Decasodium uranyl hexa­sulfate trihydrate, Na10[(UO2)(SO4)4](SO4)2·3H2O, contains an unusual uranyl sulfate cluster with the composition [(UO2)(SO4)4]6?. The cluster is composed of a uranyl pentagonal bipyramid and four sulfate tetrahedra. Three sulfate tetrahedra are linked to the uranyl pentagonal bipyramid by the sharing of vertices, and the other shares an equatorial edge of the uranyl pentagonal bipyramid. The uranyl sulfate clusters occur in layers parallel to (010). The structure also contains two isolated symmetrically distinct sulfate tetrahedra, which also occur in layers parallel to (010). The uranyl sulfate clusters and isolated sulfate tetrahedra are linked through bonds to Na+ cations, and by hydrogen bonding involving the water molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号