首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Our attempts to synthesise N→M intramolecularly coordinated diorganometallic hydrides L2MH2 [M=Si ( 4 ), Ge ( 5 ), Sn ( 6 )] containing the CH=N imine group (in which L is C,N‐chelating ligand {2‐[(2,6‐iPr2C6H3)N=CH]C6H4}?) yielded 1,1′‐bis(2,6‐diisopropylphenyl)‐2,2′‐spriobi[benzo[c][1,2]azasilole] ( 7 ), 1,1′‐bis(2,6‐diisopropylphenyl)‐2,2′‐spriobi[benzo[c][1,2]azagermole] ( 8 ) and C,N‐chelated homoleptic stannylene L2Sn ( 10 ), respectively. Compounds 7 and 8 are an outcome of a spontaneous double hydrometallation of the two CH=N imine moieties induced by N→M intramolecular coordination (M=Si, Ge) in the absence of any catalyst. In contrast, the diorganotin hydride L2SnH2 ( 6 ) is redox‐unstable and the reduction of the tin centre with the elimination of H2 provided the C,N‐chelated homoleptic stannylene L2Sn ( 10 ). Compounds 7 and 8 were characterised by NMR spectroscopy and X‐ray diffraction analysis. Because the proposed N→M intramolecularly coordinated diorganometallic hydrides L2MH2 [M=Si ( 4 ), Ge ( 5 ), Sn ( 6 )] revealed two different types of reduction reactions, DFT calculations were performed to gain an insight into the structures and bonding of the non‐isolable diorganometallic hydrides as well as the products of their subsequent reactions. Furthermore, the thermodynamic profiles of the different reaction pathways with respect to the central metal atom were also investigated.  相似文献   

2.
Our attempts to synthesize the N→Si intramolecularly coordinated organosilanes Ph2L1SiH ( 1 a ), PhL1SiH2 ( 2 a ), Ph2L2SiH ( 3 a ), and PhL2SiH2 ( 4 a ) containing a CH?N imine group (in which L1 is the C,N‐chelating ligand {2‐[CH?N(C6H3‐2,6‐iPr2)]C6H4}? and L2 is {2‐[CH?N(tBu)]C6H4}?) yielded 1‐[2,6‐bis(diisopropyl)phenyl]‐2,2‐diphenyl‐1‐aza‐silole ( 1 ), 1‐[2,6‐bis(diisopropyl)phenyl]‐2‐phenyl‐2‐hydrido‐1‐aza‐silole ( 2 ), 1‐tert‐butyl‐2,2‐diphenyl‐1‐aza‐silole ( 3 ), and 1‐tert‐butyl‐2‐phenyl‐2‐hydrido‐1‐aza‐silole ( 4 ), respectively. Isolated organosilicon amides 1 – 4 are an outcome of the spontaneous hydrosilylation of the CH?N imine moiety induced by N→Si intramolecular coordination. Compounds 1–4 were characterized by NMR spectroscopy and X‐ray diffraction analysis. The geometries of organosilanes 1 a – 4 a and their corresponding hydrosilylated products 1 – 4 were optimized and fully characterized at the B3LYP/6‐31++G(d,p) level of theory. The molecular structure determination of 1 – 3 suggested the presence of a Si?N double bond. Natural bond orbital (NBO) analysis, however, shows a very strong donor–acceptor interaction between the lone pair of the nitrogen atom and the formal empty p orbital on the silicon and therefore, the calculations show that the Si?N bond is highly polarized pointing to a predominantly zwitterionic Si+N? bond in 1 – 4 . Since compounds 1 – 4 are hydrosilylated products of 1 a – 4 a , the free energies (ΔG298), enthalpies (ΔH298), and entropies (ΔH298) were computed for the hydrosilylation reaction of 1 a – 4 a with both B3LYP and B3LYP‐D methods. On the basis of the very negative ΔG298 values, the hydrosilylation reaction is highly exergonic and compounds 1 a – 4 a are spontaneously transformed into 1 – 4 in the absence of a catalyst.  相似文献   

3.
2,2‐Difluor‐1,3‐diaza‐2‐sila‐cyclopentene – Synthesis and Reactions N,N′‐Di‐tert‐butyl‐1,4‐diaza‐1,3‐butadiene reacts with elemental lithium under reduction to give a dilithium salt, which forms with fluorosilanes the diazasilacyclopentenes 1 – 4 ; (HCNCMe3)2SiFR, R = F ( 1 ), Me ( 2 ), Me3C ( 3 ), N(CMe3)SiMe3 ( 4 ). As by‐product in the synthesis of 1 , the tert‐butyl‐amino‐methylene‐tert‐butyliminomethine substituted compound 5 was isolated, R = N(CMe3)‐CH2‐CH = NCMe3. 5 is formed in the reaction of 1 with the monolithium salt of the 1,4‐diaza‐1,3‐butadiene in an enamine‐imine‐tautomerism. 1 reacts with lithium amides to give (HCNCMe3)2SiFNHR, 6 – 12 , R = H ( 6 ), Me ( 7 ), Me2CH ( 8 ), Me3C ( 9 ), H5C6 ( 10 ), 2,6‐Me2C6H3 ( 11 ), 2,6‐(Me2CH)2C6H3 ( 12 ). The reaction of 12 with LiNH‐2.6‐(Me2CH)2C6H3 leads to the formation of (HCNCMe3)2Si(NHR)2, ( 13 ). In the presence of n‐BuLi, 12 forms a lithium salt which looses LiF in boiling toluene. Lithiated 12 adds this LiF and generates a spirocyclic tetramer with a central eight‐membered LiF‐ring ( 14 ), [(HCNCMe3)2Si(FLiFLiNR)]4, R = 2,6‐(Me2CH)2C6H3. ClSiMe3 reacts with lithiated 12 to yield the substitution product (HCNCMe3)2SiFN(SiMe3) R, ( 15 ). The crystal structures of 1 , 5 , 6 , 9 , 11 , 13 , 14 are reported.  相似文献   

4.
A series of five compounds containing the bicyclo[3.3.0]octa‐2,6‐diene skeleton are described, namely tetramethyl cis,cis‐3,7‐dihydroxybicyclo[3.3.0]octa‐2,6‐diene‐2,4‐exo,6,8‐exo‐tetracarboxylate, C16H18O10, (I), tetramethyl cis,cis‐3,7‐dihydroxy‐1,5‐dimethylbicyclo[3.3.0]octa‐2,6‐diene‐2,4‐exo,6,8‐exo‐tetracarboxylate, C18H22O10, (II), tetramethyl cis,cis‐3,7‐dimethoxybicyclo[3.3.0]octa‐2,6‐diene‐2,4‐exo,6,8‐exo‐tetracarboxylate, C18H22O10, (III), tetramethyl cis,cis‐3,7‐dimethoxy‐1,5‐dimethylbicyclo[3.3.0]octa‐2,6‐diene‐2,4‐exo,6,8‐exo‐tetracarboxylate, C20H26O10, (IV), and tetramethyl cis,cis‐3,7‐diacetoxybicyclo[3.3.0]octa‐2,6‐diene‐2,4‐exo,6,8‐exo‐tetracarboxylate, C20H22O12, (V). The bicyclic core is substituted in all cases at positions 2, 4, 6 and 8 with methoxycarbonyl groups and additionally at positions 3 and 7 with hydroxy [in (I) and (II)], methoxy [in (III) and (IV)] or acetoxy [in (V)] groups. The conformations of the methoxycarbonyl groups at positions 2 and 4 are exo for all five compounds. Each C5 ring of the bicyclic skeleton is almost planar, but the rings are not coplanar, with dihedral angles of 54.93 (7), 69.85 (5), 64.07 (4), 80.74 (5) and 66.91 (7)° for (I)–(V), respectively, and the bicyclooctadiene system adopts a butterfly‐like conformation. Strong intramolecular hydrogen bonds exist between the –OH and C=O groups in (I) and (II), with O...O distances of 2.660 (2) and 2.672 (2) Å in (I), and 2.653 (2) and 2.635 (2) Å in (II). The molecular packing is stabilized by weaker C—H...O(=C) interactions, leading to dimers in (I)–(III) and to a chain structure in (V). The structure series presented in this article shows how the geometry of the cycloocta‐2,6‐diene skeleton changes upon substitution in different positions and, consequently, how the packing is modified, although the intermolecular interactions are basically the same across the series.  相似文献   

5.
The N,N‐diaryliminoacenaphthenes, 1,2‐[2,4‐{(4‐FC6H4)2CH}2‐6‐MeC6H4N]2‐C2C10H6 ( L1 ) and 1‐[2,4‐{(4‐FC6H4)2CH}2‐6‐MeC6H4N]‐2‐(ArN)C2C10H6 (Ar = 2,6‐Me2C6H3 L2 , 2,6‐Et2C6H3 L3 , 2,6‐i‐Pr2C6H3 L4 , 2,4,6‐Me3C6H2 L5 , 2,6‐Et2‐4‐MeC6H2 L6 ), incorporating at least one N ?2,4‐bis(difluoro benzhydryl)‐6‐methylphenyl group, have been synthesized and fully characterized. Interaction of L1 – L6 with (DME)NiBr2 (DME = 1,2‐dimethoxyethane) generates the corresponding nickel(II) bromide N,N‐chelates, L NiBr2 ( 1 – 6 ), in high yield. The molecular structures of 3 and 6 reveal distorted tetrahedral geometries at nickel with the ortho‐substituted difluorobenzhydryl group providing enhanced steric protection to only one side of the metal center. On activation with various aluminum alkyl co‐catalysts, such as methylaluminoxane (MAO) or Et2AlCl, 1 – 6 displayed outstanding activity toward ethylene polymerization (up to 1.02 × 107 g of PE (mol of Ni)?1 h?1). Notably 1 , bearing equivalent fluorobenzhydryl‐substituted N‐aryl groups, was able in the presence of Et2AlCl to couple high activity with exceptional thermal stability generating high molecular weight branched polyethylenes at temperatures as high as 100 °C. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 1971–1983  相似文献   

6.
Kinetically stabilized congeners of carbenes, R2C, possessing six valence electrons (four bonding electrons and two non‐bonding electrons) have been restricted to Group 14 elements, R2E (E=Si, Ge, Sn, Pb; R=alkyl or aryl) whereas isoelectronic Group 15 cations, divalent species of type [R2E]+ (E=P, As, Sb, Bi; R=alkyl or aryl), were unknown. Herein, we report the first two examples, namely the bismuthenium ion [(2,6‐Mes2C6H3)2Bi][BArF4] ( 1 ; Mes=2,4,6‐Me3C6H2, ArF=3,5‐(CF3)2C6H3) and the stibenium ion [(2,6‐Mes2C6H3)2Sb][B(C6F5)4] ( 2 ), which were obtained by using a combination of bulky meta‐terphenyl substituents and weakly coordinating anions.  相似文献   

7.
Two series of novel platinum(II) 2,6‐bis(1‐alkylpyrazol‐3‐yl)pyridyl (N5Cn) complexes, [Pt(N5Cn)Cl][X] ( 1 – 9 ) and [Pt(N5Cn)(C?CR)][X] ( 10 – 13 ) (X=trifluoromethanesulfonate (OTf) or PF6; R=C6H5, C6H4p‐CF3 and C6H4p‐N(C6H5)2), with various chain lengths of the alkyl groups on the nitrogen atom of the pyrazolyl units have been successfully synthesized and characterized. Their electrochemical and photophysical properties have been studied. Some of their molecular structures have also been determined by X‐ray crystallography. Two amphiphilic platinum(II) 2,6‐bis(1‐tetradecylpyrazol‐3‐yl)pyridyl (N5C14) complexes, [Pt(N5C14)Cl]PF6 ( 7 ) and [Pt(N5C14)(C?CC6H5)]PF6 ( 13 ), were found to form stable and reproducible Langmuir–Blodgett (LB) films at the air–water interface. The characterization of such LB films has been investigated by the study of their surface pressure–area (π–A) isotherms, UV/Vis spectroscopy, XRD, X‐ray photoelectron spectroscopy (XPS), FTIR, and polarized IR spectroscopy. The luminescence property of 13 in LB films has also been studied.  相似文献   

8.
Five examples of unsymmetrical 1,2‐bis (arylimino) acenaphthene ( L1 – L5 ), each containing one N‐2,4‐bis (dibenzocycloheptyl)‐6‐methylphenyl group and one sterically and electronically variable N‐aryl group, have been used to prepare the N,N′‐nickel (II) halide complexes, [1‐[2,4‐{(C15H13}2–6‐MeC6H2N]‐2‐(ArN)C2C10H6]NiX2 (X = Br: Ar = 2,6‐Me2C6H3 Ni1 , 2,6‐Et2C6H3 Ni2 , 2,6‐i‐Pr2C6H3 Ni3 , 2,4,6‐Me3C6H2 Ni4 , 2,6‐Et2–4‐MeC6H2 Ni5 ) and (X = Cl: Ar = 2,6‐Me2C6H3 Ni6 , 2,6‐Et2C6H3 Ni7 , 2,6‐i‐Pr2C6H3 Ni8 , 2,4,6‐Me3C6H2 Ni9 , 2,6‐Et2–4‐MeC6H2 Ni10 ), in high yield. The molecular structures Ni3 and Ni7 highlight the extensive steric protection imparted by the ortho‐dibenzocycloheptyl group and the distorted tetrahedral geometry conferred to the nickel center. On activation with either Et2AlCl or MAO, Ni1 – Ni10 exhibited very high activities for ethylene polymerization with the least bulky Ni1 the most active (up to 1.06  ×  107 g PE mol?1(Ni) h?1 with MAO). Notably, these sterically bulky catalysts have a propensity towards generating very high molecular weight polyethylene with moderate levels of branching and narrow dispersities with the most hindered Ni3 and Ni8 affording ultra‐high molecular weight material (up to 1.5  ×  106 g mol?1). Indeed, both the activity and molecular weights of the resulting polyethylene are among the highest to be reported for this class of unsymmetrical 1,2‐bis (imino)acenaphthene‐nickel catalyst.  相似文献   

9.
Novel Silanes with Sterically Demanding Aryl Substituents A series of novel m‐terphenylsilanes was synthesized and fully characterized. Halogenation of Si(C6H3‐2,6‐Trip2)H3 ( 1 , Trip = C6H2‐2,4,6‐iPr3) with ICl and BI3 afforded the m‐terphenylmonochlorosilane Si(C6H3‐2,6‐Trip2)H2Cl ( 2 ) and the m‐terphenyldiiodosilane Si(C6H3‐2,6‐Trip2)HI2 ( 3 ), respectively. The chiral phosphanylmethylsilane Si(C6H3‐2,6‐Trip2)HCl(CH2PMe2) ( 6 ) was obtained by metathetical exchange of Si(C6H3‐2,6‐Trip2)HCl2 ( 4 ) with the Grignard reagent Me2PCH2MgCl ( 5 ). Similarly, metathetical exchange of SiBr4 with 0.5 equiv. of {Li(C6H3‐2,6‐Mes)}2 ( 7 ) yielded the m‐terphenyltribromsilane Si(C6H3‐2,6‐Mes2)Br3 ( 8 ). A Pd(II) catalyzed reaction of MesSiH3 ( 10 ) with 2‐iodopropane afforded the triiodosilane MesSiI3 ( 11 ) bearing the sterically less demanding mesityl substituent. The silanes were fully characterized and the molecular structures of compounds 2 and 11 were determined by single‐crystal X‐ray diffraction.  相似文献   

10.
New bis‐ and tris(iminopyrrole)‐functionalized linear (1,2‐(HNC4H3‐C(H)?N)2‐C6H4 ( 2 ), 1,3‐(HNC4H3‐C(H)?N)2‐C6H4 ( 3 ), 1,4‐(HNC4H3‐C(H)?N)2‐C6H4 ( 4 ), 4,4′‐(HNC4H3‐C(H)?N)2‐(C6H4‐C6H4) ( 5 ), 1,5‐(HNC4H3C‐(H)?N)2‐C10H6 ( 6 ), 2,6‐(HNC4H3C‐(H)?N)2‐C10H6 ( 7 ), 2,6‐(HNC4H3C‐(H)?N)2‐C14H8 ( 8 )) and star‐shaped (1,3,5‐(HNC4H3‐C(H)?N‐1,4‐C6H4)3‐C6H3 ( 9 )) π‐conjugated molecules were synthesized by the condensation reactions of 2‐formylpyrrole ( 1 ) with several aromatic di‐ and triamines. The corresponding linear diboron chelate complexes (Ph2B[1,3‐bis(iminopyrrolyl)‐phenyl]BPh2 ( 10 ), Ph2B[1,4‐bis(iminopyrrolyl)‐phenyl]BPh2 ( 11 ), Ph2B[4,4′‐bis(iminopyrrolyl)‐biphenyl]BPh2 ( 12 ), Ph2B[1,5‐bis(iminopyrrolyl)‐naphthyl]BPh2 ( 13 ), Ph2B[2,6‐bis(iminopyrrolyl)‐naphthyl]BPh2 ( 14 ), Ph2B[2,6‐bis(iminopyrrolyl)‐anthracenyl]BPh2 ( 15 )) and the star‐shaped triboron complex ([4′,4′′,4′′′‐tris(iminopyrrolyl)‐1,3,5‐triphenylbenzene](BPh2)3 ( 16 )) were obtained in moderate to good yields, by the treatment of 3 – 9 with B(C6H5)3. The ligand precursors are non‐emissive, whereas most of their boron complexes are highly fluorescent; their emission color depends on the π‐conjugation length. The photophysical properties of the luminescent polyboron compounds were measured, showing good solution fluorescence quantum yields ranging from 0.15 to 0.69. DFT and time‐dependent DFT calculations confirmed that molecules 10 and 16 are blue emitters, because only one of the iminopyrrolyl groups becomes planar in the singlet excited state, whereas the second (and third) keeps the same geometry. Compound 13 , in which planarity is not achieved in any of the groups, is poorly emissive. In the other examples ( 11 , 12 , 14 , and 15 ), the LUMO is stabilized, narrowing the gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital (HOMO–LUMO), and the two iminopyrrolyl groups become planar, extending the size of the π‐system, to afford green to yellow emissions. Organic light‐emitting diodes (OLEDs) were fabricated by using the new polyboron complexes and their luminance was found to be in the order of 2400 cd m?2, for single layer devices, increasing to 4400 cd m?2 when a hole‐transporting layer is used.  相似文献   

11.
LGa(P2OC)cAAC 2 features a 1,2-diphospha-1,3-butadiene unit with a delocalized π-type HOMO and a π*-type LUMO according to DFT calculations. [LGa(P2OC)cAAC][K(DB-18-c-6)] 3 [K(DB-18-c-6] containing the 1,2-diphospha-1,3-butadiene radical anion 3 ⋅ was isolated from the reaction of 2 with KC8 and dibenzo-18-crown-6. 3 reacted with [Fc][B(C6F5)4] (Fc=ferrocenium) to 2 and with TEMPO to [L−HGa(P2OC)cAAC][K(DB-18-c-6)] 4 [K(DB-18-c-6] containing the 1,2-diphospha-1,3-butadiene anion 4 . The solid state structures of 2 , 3 K(DB-18-c-6], and 4 [K(DB-18-c-6] were determined by single crystal X-ray diffraction (sc-XRD).  相似文献   

12.
The bis(silyl)triazene compound 2,6‐(Me3Si)2‐4‐Me‐1‐(N?N? NC4H8)C6H2 ( 4 ) was synthesized by double lithiation/silylation of 2,6‐Br2‐4‐Me‐1‐(N?N? NC4H8)C6H2 ( 1 ). Furthermore, 2,6‐bis[3,5‐(CF3)2‐C6H3]‐4‐Me‐C6H2‐1‐(N?N? NC4H8)C6H2 derivative 6 can be easily synthesized by a C,C‐bond formation reaction of 1 with the corresponding aryl‐Grignard reagent, i.e., 3,5‐bis[(trifluoromethyl)phenyl]magnesium bromide. Reactions of compound 4 with KI and 6 with I2 afforded in good yields novel phenyl derivatives, 2,6‐(Me3Si)2‐4‐MeC6H2? I and 2,6‐bis[3,5‐(CF3)2? C6H3]‐4‐MeC6H2? I ( 5 and 7 , resp.). On the other hand, the analogous m‐terphenyl 1,3‐diphenylbenzene compound 2,6‐bis[3,5‐(CF3)2? C6H3]C6H3? I ( 8 ) could be obtained in moderate yield from the reaction of (2,6‐dichlorophenyl)lithium and 2 equiv. of aryl‐Grignard reagent, followed by the reaction with I2. Different attempts to introduce the tBu (Me3C) or neophyl (PhC(Me)2CH2) substituents in the central ring were unsuccessful. All the compounds were fully characterized by elemental analysis, melting point, IR and NMR spectroscopy. The structure of compound 6 was corroborated by single‐crystal X‐ray diffraction measurements.  相似文献   

13.
Herein we report the employment of the quintuply bonded dichromium amidinates [Cr{κ2‐HC(N‐2,6‐iPr2C6H3)(N‐2,6‐R2C6H3)}]2 (R=iPr ( 1 ), Me ( 7 )) as catalysts to mediate the [2+2+2] cyclotrimerization of terminal alkynes giving 1,3,5‐trisubstituted benzenes. During the catalysis, the ultrashort Cr−Cr quintuple bond underwent reversible cleavage/formation, corroborated by the characterization of two inverted arene sandwich dichromium complexes (μ‐η66‐1,3,5‐(Me3Si)3C6H3)[Cr{κ2‐HC(N ‐2,6‐iPr2C6H3)(N ‐2,6‐R2C6H3)}]2 (R=iPr ( 5 ), Me ( 8 )). In the presence of σ donors, such as THF and 2,4,6‐Me3C6H2CN, the bridging arene 1,3,5‐(Me3Si)3C6H3 in 5 and 8 was extruded and 1 and 7 were regenerated. Theoretical calculations were employed to disclose the reaction pathways of these highly regioselective [2+2+2] cylcotrimerization reactions of terminal alkynes.  相似文献   

14.
The synthesis and single‐crystal X‐ray structures of the novel molybdenum imido alkylidene N‐heterocyclic carbene complexes [Mo(N‐2,6‐Me2C6H3)(IMesH2)(CHCMe2Ph)(OTf)2] ( 3 ), [Mo(N‐2,6‐Me2C6H3)(IMes)(CHCMe2Ph)(OTf)2] ( 4 ), [Mo(N‐2,6‐Me2C6H3)(IMesH2)(CHCMe2Ph)(OTf){OCH(CF3)2}] ( 5 ), [Mo(N‐2,6‐Me2C6H3)(CH3CN)(IMesH2)(CHCMe2Ph)(OTf)]+ BArF? ( 6 ), [Mo(N‐2,6‐Cl2C6H3)(IMesH2)(CHCMe3)(OTf)2] ( 7 ) and [Mo(N‐2,6‐Cl2C6H3)(IMes)(CHCMe3)(OTf)2] ( 8 ) are reported (IMesH2=1,3‐dimesitylimidazolidin‐2‐ylidene, IMes=1,3‐dimesitylimidazolin‐2‐ylidene, BArF?=tetrakis‐[3,5‐bis(trifluoromethyl)phenyl] borate, OTf=CF3SO3?). Also, silica‐immobilized versions I1 and I2 were prepared. Catalysts 3 – 8 , I1 and I2 were used in homo‐, cross‐, and ring‐closing metathesis (RCM) reactions and in the cyclopolymerization of α,ω‐diynes. In the RCM of α,ω‐dienes, in the homometathesis of 1‐alkenes, and in the ethenolysis of cyclooctene, turnover numbers (TONs) up to 100 000, 210 000 and 30 000, respectively, were achieved. With I1 and I2 , virtually Mo‐free products were obtained (<3 ppm Mo). With 1,6‐hepta‐ and 1,7‐octadiynes, catalysts 3 , 4 , and 5 allowed for the regioselective cyclopolymerization of 4,4‐bis(ethoxycarbonyl)‐1,6‐heptadiyne, 4,4‐bis(hydroxymethyl)‐1,6‐heptadiyne, 4,4‐bis[(3,5‐diethoxybenzoyloxy)methyl]‐1,6‐heptadiyne, 4,4,5,5‐tetrakis(ethoxycarbonyl)‐1,7‐octadiyne, and 1,6‐heptadiyne‐4‐carboxylic acid, underlining the high functional‐group tolerance of these novel Group 6 metal alkylidenes.  相似文献   

15.
New reactive, divalent lanthanoid formamidinates [Yb(Form)2(thf)2] (Form=[RNCHNR]; R=o‐MeC6H4 (o‐TolForm; 1 ), 2,6‐Me2C6H3 (XylForm; 2 ), 2,4,6‐Me3C6H2 (MesForm; 3 ), 2,6‐Et2C6H3 (EtForm; 4 ), o‐PhC6H4 (o‐PhPhForm; 5 ), 2,6‐iPr2C6H3 (DippForm; 6 ), o‐HC6F4 (TFForm; 7 )) and [Eu(DippForm)2(thf)2] ( 8 ) have been prepared by redox transmetallation/protolysis reactions between an excess of a lanthanoid metal, Hg(C6F5)2 and the corresponding formamidine (HForm). X‐ray crystal structures of 2 – 6 and 8 show them to be monomeric with six‐coordinate lanthanoid atoms, chelating N,N′‐Form ligands and cis‐thf donors. However, [Yb(TFForm)2(thf)2] ( 7 ) crystallizes from THF as [Yb(TFForm)2(thf)3] ( 7 a ), in which ytterbium is seven coordinate and the thf ligands are “pseudo‐meridional”. Representative complexes undergo C? X (X=F, Cl, Br) activation reactions with perfluorodecalin, hexachloroethane or 1,2‐dichloroethane, and 1‐bromo‐2,3,4,5‐tetrafluorobenzene, giving [Yb(EtForm)2F]2 ( 9) , [Yb(o‐PhPhForm)2F]2 ( 10) , [Yb(o‐PhPhForm)2Cl(thf)2] ( 11) , [Yb(DippForm)2Cl(thf)] ( 12) and [Yb(DippForm)2Br(thf)] ( 16) . X‐ray crystallography has shown 9 to be a six‐coordinate, fluoride‐bridged dimer, 12 and 16 to be six‐coordinate monomers with the halide and thf ligands cis to each other, and 11 to have a seven‐coordinate Yb atom with “pseudo‐meridional” unidentate ligands and thf donors cis to each other. The analogous terbium compound [Tb(DippForm)2Cl(thf)2] ( 13 ), prepared by metathesis, has a similar structure to 11 . C? Br activation also accompanies the redox transmetallation/protolysis reactions between La, Nd or Yb metals, Hg(2‐BrC6F4)2, and HDippForm, yielding [Ln(DippForm)2Br(thf)] complexes (Ln=La ( 14 ), Nd ( 15 ), Yb ( 16 )).  相似文献   

16.
A new family of t‐butyl substituted chromium(III) chloride complexes ( Cr1 – Cr6 ), bearing 2‐(1‐(2,6‐dibenzhydryl‐4‐t‐butylphenylimino)ethyl)‐6‐(1‐(arylimino)ethyl)pyridine (aryl = 2,6‐Me2C6H3 Cr1 , 2,6‐Et2C6H3 Cr2 , 2,6‐i‐Pr2C6H3 Cr3 , 2,4,6‐Me3C6H2 Cr4 and 2,6‐Et2‐4‐MeC6H2 Cr5 ) or 2,6‐bis(1‐(2,6‐dibenzhydryl‐4‐t‐butylphenylimino)ethyl)pyridine ( Cr6 ), has been synthesized by the reaction of CrCl3·6H2O in good yield with the corresponding ligands ( L1 – L6 ), respectively. The molecular structures of Cr2 and Cr6 were characterized by X‐ray diffraction highlighted a distorted octahedral geometry with the coordinated N,N,N ligand and three bonded chlorides around the metal center. On activation with modified methylaluminoxane or triisobutyl aluminum, most of the chromium precatalysts exhibit good activities toward ethylene polymerization and produce linear polyethylenes with high‐molecular weight. In addition, an in‐depth catalytic evaluation of Cr2 was conducted to investigate how cocatalyst type and amount, reaction temperature, and run time affect the catalytic activities and polymer properties. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 1049–1058  相似文献   

17.
Reactions of 2,5‐dibromothiophene, 1 , with [Pd2(dba)3]?dba [Pd(dba)2; dba = dibenzylideneacetone] in the presence of N‐donor ligands such as 2,2′‐bipyridine (bpy) and 4,4′‐di‐tert‐butyl‐2,2′‐bipyridine (dtbbpy) give arylpalladium complexes of cis‐[2‐(5‐BrC4H2S)PdBrL2], 2a, b [L2 = bpy ( 2a ), L2 = dtbbpy ( 2b )], and cis‐cis‐L2PdBr[2,5‐(C4H2S‐)PdBr(L2)], 3a, b [L2 = bpy ( 3a ), L2 = dtbbpy ( 3b )]. Treatment of cis complexes 2a, b and 3a, b with CO causes the insertion of CO into the Pd? C bond to give the aroyl derivatives of palladium complexes of cis‐[2‐(5‐BrC4H2S)COPdBrL2], 4a, b [L2 = bpy ( 4a ), L2 = dtbbpy ( 4b )], and cis‐cis‐[(L2)(CO)BrPdC4H2S‐PdBr(CO)(L2)], 5a, b [L2 = bpy ( 5a ) and L2 = dtbbpy ( 5b )], respectively. Treating complexes 2a, b with 1 mole equivalent of isocyanide XyNC (Xy = 2,6‐dimethylphenyl) gave iminoacyl complexes cis‐[2‐(5‐BrC4H2S)C?NXyPdBrL2], 6a, b [L2 = bpy ( 6a ), L2 = dtbbpy ( 6b )], and a 3‐fold excess of isocyanide XyNC (Xy = 2,6‐dimethylphenyl) gave triiminoacyl complexes [2‐(5‐BrC4H2S)(C?NXy)3 PdBr], 7 . Cyclization reactions of 6a, b with 3 mole equivalents of isocyanide XyNC (Xy = 2,6‐dimethylphenyl) or cyclization reaction of 7 with 1 mole equivalent of isocyanide XyNC (Xy = 2,6‐dimethylphenyl) both gave tetraiminoacyl complexes of [2‐(5‐BrC4H2S)(C?NXy)4PdBr], 8 , which was also obtained by the reaction of 1 or 2a, b with a 4‐fold excess of isocyanide XyNC with or without add Pd(dba)2. Similarly, complexes 3a and b were also reacted with 2 mole equivalents of isocyanide XyNC (Xy = 2,6‐dimethylphenyl) to give iminoacyl complexes cis‐cis‐[(L2)(CNXy)BrPdC4H2S‐PdBr(CNXy)(L2)], 10a, b [L2 = bpy ( 10a ), L2 = dtbbpy ( 10b )] and an 8‐fold excess of isocyanide XyNC (Xy = 2,6‐dimethylphenyl) afforded tetraiminoacyl complexes of [2,5‐(C4H2S)(C?NXy)8Pd2Br2], 11 . Complexes 2a, b and 3a, b reacted with TlOTf [(TfO = CF3SO3)] in CH2Cl2 to give 9a, b and 12a, b , respectively, in a moderate yield. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
Reactions of CrCl3(thf)3 with bis(imino)pyridines gave a series of {bis(imino)pyridine}chromium(III) trichloride complexes, {2,6‐(RN?CMe)2C5H3N}CrCl3 [R = C6HPr2‐2,6 ( 1 ), C6H3Et2‐2,6 ( 2 ), C6H3Me2‐2,6 ( 3 ), C6H2Me3‐2,4,6 ( 4 ), C6H3Me2‐3,5 ( 5 ), C6H5 ( 6 ), cyclohexyl ( 7 ), 2‐methyl‐1‐naphthyl ( 8 ), C6H3F2‐2,6 ( 9 ), C6H3Br2‐2,6 ( 10 ), C6F5 ( 11 )]. Pseudo‐octahedral geometries of 6 , 10 , and 11 were revealed by X‐ray crystallography. The complexes having bulky substituents such as 1 – 4 showed high activity for ethylene polymerization in combination with modified methylaluminoxane (MMAO) to give linear polyethylenes. In sharp contrast, the pentafluorophenyl complex 11 /modified methylaluminoxane system was found to be moderately active for ethylene homopolymerization to give moderately branched polyethylene with only ethyl branches. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3368–3375, 2005  相似文献   

19.
The title compounds, namely 6‐methoxy‐3,3‐dimethyl‐3H‐benzo[f]chromene, C16H16O2, (III), and racemic 3‐bromo‐2,2,6,6‐tetramethyl‐3,4‐dihydro‐2H,6H‐1,5‐dioxatriphenylene, C20H21BrO2, (IV), were both synthesized in one‐step regioselective Wittig reactions from substituted 1,2‐naphthoquinones. The new ring in both compounds adopts a screw‐boat conformation. A single π–π stacking interaction links the molecules of (III) into centrosymmetric dimeric aggregates, and a single C—H...π(arene) hydrogen bond links the molecules of (IV) into centrosymmetric dimers.  相似文献   

20.
(2S,3S)‐2,6‐Dimethylheptane‐1,3‐diol, C9H20O2, (I), was synthesized from the ketone (R)‐4‐benzyl‐3‐[(2R,3S)‐3‐hydroxy‐2,6‐dimethylheptanoyl]‐1,3‐oxazolidin‐2‐one, C19H27NO4, (II), containing C atoms of known chirality. In both structures, strong hydrogen bonds between the hydroxy groups form tape motifs. The contribution from weaker C—H...O hydrogen bonds is much more evident in the structure of (II), which furthermore contains an example of a direct short Osp3...Csp2 contact that represents a usually unrecognized type of intermolecular interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号