首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Three 3, 5‐dimethylpyrazole (pz*) copper(II) complexes, [Cu(pz*)4(H2O)](ClO4)2 ( 1 ), [Cu(pz*)2(NCS)2]·H2O ( 2 ), and [Cu(pz*)2(OOCCH=CHCOO)(H2O)]·1.5H2O ( 3 ), have been synthesized and characterized with single crystal X‐ray structure analysis. 1 crystallizes in the tetragonal space group, 14/m, with a = 14.027 (3) Å, c = 16.301 (5) Å, and Z = 4. 2 crystallizes in the monoclinic space group, P21/c, with a = 8.008 (3) Å, b = 27.139 (9) Å, c = 8.934 (3) Å, β = 106.345 (6)°, and Z = 4. 3 crystallizes in the triclinic space group, P1¯, with a = 7.291 (9) Å, b = 10.891 (13) Å, c = 11.822 (14) Å, α = 80.90 (2)°, β = 79.73(2)°, γ = 70.60(2)°, and Z = 2. In 1 , one water molecule and four pz* ligands are coordinated to CuII. Two [Cu(pz*)4(H2O)]2+ units are connected to ClO4 via hydrogen bonds. One lattice water molecule is found in the unit cell of 2 , which forms an one‐dimensional chain via intermolecular hydrogen bonds with the N‐H atom of pz*. In 3 , the oxygen atom of the coordinated water molecule is connected with two C=O groups of two neighbouring maleic acid molecules to form a linear parallelogram structure. Another C=O group of maleic acid forms a hydrogen bond with the N‐H atom of pz* to create a two‐dimensional structure. The spectroscopic and bond properties are also discussed.  相似文献   

2.
The synthesis, structure, and magnetic properties of four 2,2′‐dipyridylamine ligand (abbreviated as Hdpa) containing copper(II) complexes. There is one binuclear compound, which is [Cu21,1‐NCO)2(NCO)2(Hdpa)2] ( 1 ), and three mononuclear compounds, which are [Cu{N(CN)2}2(Hdpa)2] ( 2 ), [Cu(CH3CO2)(Hdpa)2·N(CN)2] ( 3 ), and [Cu(NCS)(Acac)] ( 4 ). Compounds 1 and 4 crystallize in the monoclinic system, space group P2(1)/c and Z = 4, with a = 8.2465(6) Å, b = 9.3059(7) Å, c = 16.0817(12) Å, β = 91.090(1)°, and V = 1233.90(16) Å3 for 1 and a = 7.6766(6) Å, b = 21.888(3) Å, c = 10.4678(12) Å, β = 90.301(2)°, and V= 1758.8(4) Å3 for 4 . Compounds 2 and 3 crystallize in the triclinic system, space group P‐1 and Z = 1, with a = 8.1140(3) Å, b = 8.2470(3) Å, c = 9.3120(4) Å, β = 102.2370(10)°, and V = 592.63(4) Å3 for 2 and a = 7.4780(2) Å, b = 12.5700(3) Å, c = 13.0450(3) Å, β = 96.351(2)°, and V = 1211.17(5) Å3 for 3 . Complex ( 1 ), the magnetic data was fitted by the Bleaney‐Bowers equation (1). A very good fit was derived with J = 23.96, Θ = ?1.5 (g = 1.97). Complex ( 1 ) shows the ferromagnetism. Complexes ( 2 ), ( 3 ) and ( 4 ) of have the it is the typical paramagnetic behavior of unpaired electrons. Under a low temperature around 25 K, complexes ( 2 ) and ( 3 ) show weak ferromagnetic behavior. They are the cause of hydrogen bonds.  相似文献   

3.
The complexes [Cu(dpp)Br2] ( 1 ) and [Cu(dpp)2][CuBr2] ( 2 ) (dpp = 2,9‐diphenyl‐1,10‐phenanthroline) were synthesized and characterized by single‐crystal X‐ray diffraction methods. Reaction of copper(II) bromide with the dpp ligand in dichloromethane at room temperature afforded 1 , which is a rare example of non‐square planar four‐coordinate copper(II) complexes. Complex 1 crystallizes in the monoclinic space group C2/c with a = 15.352(3), b = 13.192(3), c = 11.358(2) Å, β = 120.61(3)°, V = 1979.6(7) Å3, Z = 4, Dcalc = 1.865 g cm?3. The coordination geometry about the copper center is distorted about halfway between square planar and tetrahedral. The Cu‐N distance is 2.032(2) Å and the Cu‐Br distance 2.3521(5) Å. Heating a CH2Cl2 or acetone solution of 1 resulted in complex 2 , which consists of a slightly distorted tetrahedral [Cu(dpp)2]+ cation and a linear two‐coordinate [CuBr2]? anion. 2 crystallizes in the triclinic space group with a = 10.445(2), b = 11.009(2), c = 18.458(4) Å, α = 104.72(3), β = 94.71(3), γ = 103.50(3)°, V = 1973.3(7) Å3, Z = 2, Dcalc = 1.602 g cm?3. The four Cu(1)‐N distances are between 2.042(3) and 2.067(3) Å, the distance of Cu(2)‐Br(1) 2.2268(8) Å, and the disordered Cu(3)‐Br(2) distances are 2.139(7) and 2.237(4) Å, respectively. Complex 2 could also be prepared by directly reacting CuBr with dpp in CH2Cl2.  相似文献   

4.
The first selenite chloride hydrates, Co(HSeO3)Cl · 3 H2O and Cu(HSeO3)Cl · 2 H2O, have been prepared from solution and characterised by single‐crystal X‐ray diffraction. The cobalt phase adopts an unusual “one‐dimensional” structure built up from vertex‐sharing pyramidal [HSeO3]2–, and octahedral [CoO2(H2O)4]2– and [CoO2(H2O)2Cl2]4– units. Inter‐chain bonding is by way of hydrogen bonds or van der Waals' interactions. The atomic arrangement of the copper phase involves [HSeO3]2– pyramids and Jahn‐Teller distorted [CuCl2(H2O)4] and [CuO4Cl2]8– octahedra, sharing vertices by way of Cu–O–Se and Cu–Cl–Cu bonds. Crystal data: Co(HSeO3)Cl · 3 H2O, Mr = 276.40, triclinic, space group P 1 (No. 2), a = 7.1657(5) Å, b = 7.3714(5) Å, c = 7.7064(5) Å, α = 64.934(1)°, β = 68.894(1)°, γ = 71.795(1)°, V = 337.78(7) Å3, Z = 2, R(F) = 0.036, wR(F) = 0.049. Cu(HSeO3)Cl · 2 H2O, Mr = 263.00, orthorhombic, space group Pnma (No. 62), a = 9.1488(3) Å, b = 17.8351(7) Å, c = 7.2293(3) Å, V = 1179.6(2) Å3, Z = 8, R(F) = 0.021, wR(F) = 0.024.  相似文献   

5.
The binary intermetallic compound NiMg2 (own structure type) forms a pronounced solid solution NiMg2?xSnx. The structure of NiMg1.85(1)Sn0.15(1) was refined on the basis of single crystal X‐ray data: P6422, a = 520.16(7), c = 1326.9(1) pm, wR2 = 0.0693, 464 F2 values, and 20 variables. With increasing magnesium/tin substitution, the structure type changes. Crystals with x = 0.22 and 0.40 adopt the orthorhombic CuMg2 type: Fddd, a = 911.0(2), b = 514.6(1), c = 1777.0(4) pm, wR2 = 0.0427, 394 F2 values for NiMg1.78(1)Sn0.22(1), and a = 909.4(1), b = 512.9(1), c = 1775.6(1) pm, wR2 = 0.0445, 307 F2 values for NiMg1.60(1)Sn0.40(1) with 19 variables per refinement. The nickel atoms build up almost linear chains with Ni–Ni distances between 260 and 263 pm in both modifications where each nickel atom has coordination number 10 with two nickel and eight Mg/Sn neighbors. Both magnesium sites in the NiMg2 and CuMg2 type structures show Mg/Sn mixing. The Ni polyhedra are condensed leading to dense layers which show a different stacking sequence in both structure types. The crystal chemical peculiarities of these intermetallics are briefly discussed.  相似文献   

6.
2‐Nitroimino‐5‐nitro‐hexahydro‐1,3,5‐triazine (NNHT), was synthesized and its structure was determined by single‐crystal X‐ray diffraction. The crystal is monoclinic, space group P21/c with crystal parameters of a = 9.4031(13) Å, b = 8.5891(12) Å, c = 9.0200(13) Å, β = 91.213(2)°, V = 728.33(18) Å3, Z = 4, F(000) = 392, Dc = 1.734 g/cm3. The experimental geometry of NNHT was input to Gaussian‐03W program and optimized using DFT‐B3LYP/6‐311++G** method. The IR frequencies and NMR chemical shift were carried out and compared well with those of the experimental. The atomic net charges and the population analysis are discussed. The heat of formation (HOF) for NNHT was evaluated by designing an isodesmic reaction. The detonation velocity (D) and detonation pressure (P) were estimated by using the well known Kamlet‐Jacobs equation, based on the theoretical HOF.  相似文献   

7.
Two novel dicyanamide complexes [Co(dmf)2(NCNCN)2] ( 1 ) and [Cu(bipy)(NCNCN)]ClO4 ( 2 ) have been synthesized and structurally characterized. 1 crystallizes in the monoclinic space group C2 with a = 13.568(6)Å, b = 7.403(3)Å, c = 8.118(3)Å and Z = 2, whereas 2 crystallizes in the monoclinic system, Cc group, a = 14.270(7)Å, b = 9.143(5)Å, c = 12.371(1) Å, β = 118.612(7)°, and Z = 4. According to X‐ray crystallographic studies, in complex 1 each CoII ion is six‐coordinated with four nitrogen atoms from four μ1, 5‐dca (dca = dicyanamide) ligands and two oxygen atoms from two dmf ligands to form distorted octahedra. 1 forms a 1‐D network bridged via μ1, 5‐dca. 2 consists of a uniform Cu(NCNCN)Cu chain, each CuII ion is octahedrally coordinated with four nitrogen atoms from two μ1, 5‐dca ligands and one bipy ligand and two oxygen atoms from two ClO4 ions. The octahedral CuII ion shows a significant Jahn‐Teller distortion, with two axial oxygen atoms considerably farther from the copper than the four equatorial nitrogens.  相似文献   

8.
The complex [Cu(nitroca2ph)2]ClO4, where nitroca2ph is N,N′‐bis(2‐nitrocinnamaldehyde)phenylenediimine, crystallizes in the triclinic space group with a = 13.167(1), b = 13.209(1), c = 14.465(1) Å, α = 83.209(9)°, β = 68.438(2)°, γ = 70.803(2)°, V = 2209.4(3) Å3, Z = 2, Dcalc = 1.527 mg/m3. The coordination polyhedron about the Cu(I) atom is best described as a distorted tetrahedron. 2‐nitroca2en acts as a bidentate ligand coordinating via two N atoms to the copper. The four Cu–N distances are 2.04 (2), 2.038(2), 2.046(2), and 2.062(2) Å.  相似文献   

9.
The complexes of 2,11‐dithia‐4,5,6,7,8,9‐hexahydro[3.3]paracyclophane (dthhpcp) with Cu(I), i.e. [Cu2I2(dthhpcp)2]·2H2O 1 , or with Ag(I), i.e. [Ag(dthhpcp)(NO3)]thf 2 and [Ag(dthpcp)(CF3COO)] 3 , were prepared for structural study by single‐crystal X‐ray diffraction analysis. For these three complexes, dthhpcp serves as a bridging group in the polymeric structure through bridging sulfur atoms via metal, while the bonding of anion with the second metal atom forms the multi‐diminished structures. Complex 1 is a novel two‐dimensional coordination polymer composed of Cu6 motifs, in which Cu2I2 formed a square planar unit to link the dthhpcp molecule. The two oxygen atoms of the nitrate anion as a bridge for two Ag atoms in complex 2 provides a three‐dimensional channel framework of silver(I) with a tetrahydrofuran molecule as a guest inside the open cavities. In contrast, the analogous reaction with silver triflouroacetate gave a complex 3 , which is composed of infinite linear chains of‐Ag‐dthhpcp‐Ag‐dthhpcp‐ along the a axis. Unit cell data: complex 1 , orthorhombic system, space group P2(1)2(1)2(1), a = 19.2982(11) Å b = 16.5661(10) Å, c = 25.3006(15) Å, β = 90°, Z = 8; complex 2 , orthorhombic system, space group Pna2(1), a = 8.8595(6) Å, b = 12.6901(9) Å, c = 19.8449(14) Å, β = 90°, Z = 4; complex 3 , monoclinic system, space group P2(1)/n, a = 8.845(3) Å, b = 20.841(6) Å, c = 11.061(3) Å, β = 107.832(6)°, Z = 4.  相似文献   

10.
Three polymorphs of barium dihydrogen‐hypodiphosphate(IV)‐dihydrate, BaH2P2O6 · 2H2O ( A , B and C ), were obtained and structurally characterized by single‐crystal X‐ray diffraction. A crystallizes in the monoclinic space group P21/n (no. 14) with a = 7.459(1) Å, b = 8.066(1) Å, c = 12.460(2) Å, β = 91.27(1) ° and Z = 4. B crystallizes in the monoclinic space group C2/c (no. 15) with a = 11.049(8) Å, b = 6.486(3) Å, c = 10.956(6) Å, β = 106.89(5) ° and Z = 4. C crystallizes in the orthorhombic space group C2221 (no. 20) with a = 9.193(3) Å, b = 6.199(2) Å, c = 12.888(4) Å and Z = 4. Discrete [H2P2O6]2– units, barium cations and water molecules, held together by intermolecular hydrogen bonds of the type O–H ··· O, build up the structures of the three polymorphs. The phase purity of A and C was verified by powder diffraction measurements.  相似文献   

11.
1,3‐Dimethyl‐5‐amino‐1H‐tetrazolium 5‐nitrotetrazolate ( 5b ) was synthesized in high yield from 1,4‐dimethyl‐5‐amino‐1H‐tetrazolium iodide ( 5a ) and silver 5‐nitrotetrazolate. Both new compounds ( 5a and 5b ) were characterized using vibrational (IR and Raman) and multinuclear NMR spectroscopy (1H, 13C and 15N), elemental analysis and single‐crystal X‐ray diffraction. 5a crystallizes in an orthorhombic cell: Pbca, a = 11.5016(4), b = 13.7744(5), c = 13.7744(5) Å, V = 1638.2(1) Å3, Z = 8, ρ = 1.955 g cm?3, R1 = 0.0210 (F > 4σ(F)), wR2 (all data) = 0.0542; whereas 5b crystallizes in a monoclinic cell: C1c, a = 14.5228(8), b = 5.0347(2), c = 13.7217(7) Å, β = 112.11(1)°, V = 929.6(2) Å3, Z = 4, ρ = 1.630 g cm?3, R1 = 0.0279 (F > 4σ(F)), wR2 (all data) = 0.0585. The sensitivity of 5b to classical stimuli was determined by using standard BAM tests and its thermal stability was assessed by DSC measurements. In addition, its heat of combustion was determined by bomb calorimetry measurements. The EXPLO5 was used to calculate the detonation pressure (P) and velocity (D) of 5b (P = 13.3 GPa and D = 6379 m s?1), as well as those of its mixtures with ammonium nitrate (P = 23.2 GPa and D = 7862 m s?1) and ammonium dinitramide (P = 29.6 GPa and D = 8594 m s?1). Compound 5b is a hydrolytically stable solid with a high melting point (160 °C) and thermally stable to 190 °C with a very low sensitivity to friction (>360 N) and impact (>30 J) and good performance in combination with an oxidizer making it of interest in new environmentally friendly, insensitive explosive formulations.  相似文献   

12.
13.
The syntheses and single crystal X‐ray structure determinations are reported for [Li(thf)4][SnCl5(thf)] ( 1 ) and {[Li(Et2O)2]2‐(μ‐Cl2)2‐SnIVCl2} ( 2 ). Compound 1 is ionic with a tetrahedral coordinated lithium cation and distorted octahedral tin (IV) atom in the anion, while compound ( 2 ) is a centrosymmetric heteronuclear double salt of LiCl and SnCl4. [Li(thf)4][SnCl5(thf)] is monoclinic, P21/n, a = 11.204(1), b = 15.599(1), c = 17.720(2) Å; β = 96.734(2)°, Z = 4, R 0.0418; {[Li(Et2O)2]2‐(μ‐Cl2)2‐SnIVCl2} is monoclinic, P21/n, a = 10.848(2), b = 12.764(2), c = 11.748(2) Å; β = 90.388(3)°, Z = 4, R = 0.0851.  相似文献   

14.
The synthesis and the crystal structures of the complexes [Cu(LI)2](ClO4) ( 1 ) and [Cu(LI)(CH3CN)2(ClO4)2] ( 2 ) are reported. 1 crystallizes in the monoclinic space group C2/c with the unit cell dimensions a = 13.169(4), b = 12.289(3), c = 14.732(3) Å, β = 109.03(2)° and Z = 4. Copper(I) is coordinated to four N atoms of the two 1,10‐Phenanthroline‐5,6‐dione (LI) ligands with a two‐fold axis passing between the ligands. The copper(II) compound 2 crystallizes in the orthorhombic space group Pbn21 with unit cell dimensions of a = 7.498(5), b = 23.492(7), c = 12.363(4) Å and Z = 4. Copper(II) coordination can be described as a distorted octahedron with the N donor atoms of one LI ligand and of two molecules of CH3CN occupying the equatorial positions completed by two oxygen atoms of the two perchlorate molecules in the axial positions.  相似文献   

15.
The blue tetranuclear CuII complexes {[Cu(bpy)(OH)]4Cl2}Cl2 · 6 H2O ( 1 ) and {[Cu(phen)(OH)]4(H2O)2}Cl4 · 4 H2O ( 2 ) were synthesized and characterized by single crystal X‐ray diffraction. ( 1 ): P 1 (no. 2), a = 9.240(1) Å, b = 10.366(2) Å, c = 12.973(2) Å, α = 85.76(1)°, β = 75.94(1)°, γ = 72.94(1)°, V = 1152.2(4) Å3, Z = 1; ( 2 ): P 1 (no. 2), a = 9.770(3) Å, b = 10.118(3) Å, c = 14.258(4) Å, α = 83.72(2)°, β = 70.31(1)°, γ = 70.63(1)°, V = 1252.0(9) Å3, Z = 1. The building units are centrosymmetric tetranuclear {[Cu(bpy)(OH)]4Cl2}2+ and {[Cu(phen)(OH)]4(H2O)2}4+ complex cations formed by condensation of four elongated square pyramids CuN2(OH)2Lap with the apical ligands Lap = Cl, H2O, OH. The resulting [Cu42‐OH)23‐OH)2] core has the shape of a zigzag band of three Cu2(OH)2 squares. The cations exhibit intramolecular and intermolecular π‐π stacking interactions and the latter form 2D layers with the non‐bonded Cl anions and H2O molecules in between (bond lengths: Cu–N = 1.995–2.038 Å; Cu–O = 1.927–1.982 Å; Cu–Clap = 2.563; Cu–Oap(OH) = 2.334–2.369 Å; Cu–Oap(H2O) = 2.256 Å). The Cu…Cu distances of about 2.93 Å do not indicate direct interactions, but the strongly reduced magnetic moment of about 2.74 B.M. corresponds with only two unpaired electrons per formula unit of 1 (1.37 B.M./Cu) and obviously results from intramolecular spin couplings (χm(T‐θ) = 0.933 cm3 · mol–1 · K with θ = –0.7 K).  相似文献   

16.
Starting with a zirconium salt and LH2 , (pydaH2)2+(pydc)2?, (pyda=2, 6‐pyridinediamine; pydcH2=2,6‐pyridinedicarboxylic acid), as a 1:1 proton transfer self‐associated compound, two different compounds were resulted. One of them is a new complex of ZrIV with a flat pyridine containing ligand and structure of (pydaH)2[Zr(pydc)3] · 5H2O (1) and the other, (pydaH)+(NO3)? (2) is an ion pair with no zirconium ion. The zirconium(IV) complex (1) is crystallized in triclinic system with space group and Z = 2, the crystallographic parameters are: a = 10.612(5) Å, b = 10.617(5) Å, c = 16.815(8) Å, α = 103.654(9)°, β = 95.821(9)°, γ = 98.891(9)° and R‐value for 16767 collected reflections is 0.0592. The ion pair (2) has crystals of monoclinic system with P21 space group and Z = 2. Its crystallographic parameters are: a = 3.6227(11) Å, b = 10.034(4) Å, c = 10.296(4) Å, β = 93.422(9)° and R‐value for 4031 collected reflections is 0.0521. The two compounds were characterized with elemental analysis, ESI/MS, NMR and IR spectroscopy.  相似文献   

17.
Reaction between an aqueous ethanol solution of tin(II) chloride and that of 4‐propanoyl‐2,4‐dihydro‐5‐methyl‐2‐phenyl‐3 H‐pyrazol‐3‐one in the presence of O2 gave the compound cis‐dichlorobis(4‐propanoyl‐2,4‐dihydro‐5‐methyl‐2‐phenyl‐3 H‐pyrazol‐3‐onato) tin(IV) [(C26H26N4O4)SnCl2]. The compound has a six‐coordinated SnIV centre in a distorted octahedral configuration with two chloro ligands in cis position. The tin atom is also at a pseudo two‐fold axis of inversion for both the ligand anions and the two cis‐chloro ligands. The orange compound crystallizes in the triclinic space group P 1 with unit cell dimensions, a = 8.741(3) Å, b = 12.325(7) Å, c = 13.922(7) Å; α = 71.59(4), β = 79.39(3), γ = 75.18(4); Z = 2 and Dx = 1.575 g cm–3. The important bond distances in the chelate ring are Sn–O [2.041 to 2.103 Å], Sn–Cl [2.347 to 2.351 Å], C–O [1.261 to 1.289 Å] and C–C [1.401 Å] the bond angles are O–Sn–O 82.6 to 87.7° and Cl–Sn–Cl 97.59°. The UV, IR, 1H NMR and 119Sn Mössbauer spectral data of the compound are reported and discussed.  相似文献   

18.
Two new transition‐metal (TM) complex salts of the Wells‐Dawson polyanion: [Cu(2,2′‐bpy)3]2[Cu(2,2′‐bpy)2]2[P2W18O62] ( 1 ) and [2,2′‐bpy]8[Fe(2,2′‐bpy)3]8[P2W18O62]4·9H2O ( 2 ) (2,2′‐bpy = 2,2′‐bipyridine), have been synthesized under hydrothermal conditions by using pre‐prepared α‐K6P2W18O62·15H2O as a precursor. Crystal data for compound 1 : monoclinic, space group C2/c, a = 20.722(4) Å, b = 21.988(4) Å, c = 29.614(6) Å, β = 104.32(3)°, V = 13074(5) Å3, Z = 4; for compound 2 : triclinic, space group , a = 15.804(3) Å, b = 27.519(6) Å, c = 27.566(6) Å, α = 72.71(3)°, β = 89.94(3)°, γ = 89.90(3)°, V = 11447(5) Å3, Z = 1. Compounds 1 and 2 have been characterized by single‐crystal X‐ray diffraction, IR spectra, thermogravimetric analysis, XPS spectra and cyclic voltammetry. The two compounds were used as solid bulk modifiers to fabricate bulk‐modified carbon paste electrodes ( 1 ‐, 2 ‐CPE). The electrochemical behaviors of 1 ‐, 2 ‐CPE have been studied in detail. The redox behavior of the parent Wells‐Dawson type cluster was maintained completely in compounds 1 and 2 .  相似文献   

19.
Conformation and Cross Linking of (CuCN)6‐Rings in Polymeric Cyanocuprates(I) equation/tex2gif-stack-8.gif [Cu2(CN)3] (n = 2, 3) The alkaline‐tricyano‐dicuprates(I) Rbequation/tex2gif-stack-9.gif[Cu2(CN)3] · H2O ( 1 ) and Csequation/tex2gif-stack-10.gif[Cu2(CN)3] · H2O ( 2 ) were synthesized by hydrothermal reaction of CuCN and RbCN or CsCN. The dialkylammonium‐tricyano‐dicuprates(I) [NH2(Me)2]equation/tex2gif-stack-11.gif[Cu2(CN)3] ( 3 ), [NH2(iPr)2]equation/tex2gif-stack-12.gif[Cu2(CN)3] ( 4 ), [NH2(Pr)2]equation/tex2gif-stack-13.gif[Cu2(CN)3] ( 5 ) and [NH2(secBu)2]equation/tex2gif-stack-14.gif[Cu2(CN)3] ( 6 ) were obtained by the reaction of dimethylamine, diisopropylamine, dipropylamine or di‐sec‐butylamine with CuCN and NaCN in the presence of formic acid. The crystal structures of these compounds are built up by (CuCN)6‐rings with varying conformations, which are connected to layers ( 1 ) or three‐dimensional zeolite type cyanocuprate(I) frameworks, depending on the size and shape of the cations ( 2 to 6 ). Crystal structure data: 1 , monoclinic, P21/c, a = 12.021(3)Å, b = 8.396(2)Å, c = 7.483(2)Å, β = 95.853(5)°, V = 751.4(3)Å3, Z = 4, dc = 2.728 gcm—1, R1 = 0.036; 2 , orthorhombic, Pbca, a = 8.760(2)Å, b = 6.781(2)Å, c = 27.113(5)Å, V = 1610.5(5)Å3, Z = 8, dc = 2.937 gcm—1, R1 = 0.028; 3 , orthorhombic, Pna21, a = 13.504(3)Å, b = 7.445(2)Å, c = 8.206(2)Å, V = 825.0(3)Å3, Z = 4, dc = 2.023 gcm—1, R1 = 0.022; 4 , orthorhombic, Pbca, a = 12.848(6)Å, b = 13.370(7)Å, c = 13.967(7)Å, V = 2399(2)Å3, Z = 8, dc = 1.702 gcm—1, R1 = 0.022; 5 , monoclinic, P21/n, a = 8.079(3)Å, b = 14.550(5)Å, c = 11.012(4)Å, β = 99.282(8)°, V = 1277.6(8)Å3, Z = 4, dc = 1.598 gcm—1, R1 = 0.039; 6 , monoclinic, P21/c, a = 16.215(4)Å, b = 13.977(4)Å, c = 14.176(4)Å, β = 114.555(5)°, V = 2922(2)Å3, Z = 8, dc = 1.525 gcm—1, R1 = 0.070.  相似文献   

20.
Two new coordination polymers [Cd(tdc)(bpy)(H2O)]n ( 1 ) and [Cd(tdc)(phen)]n ( 2 ) (H2tdc = thiophene‐2,5‐dicarboxylic acid, bpy = 2,2′‐bipyridine and phen = 1,10‐phenanthroline) have been synthesized under hydrothermal condition. Their crystal structures have been established by X‐ray single‐crystal diffraction. Complex 1 crystallizes in the orthorhombic space group Fdd2 with a = 14.757(7), b = 45.38(2), c = 10.518(5) Å, V = 7044(6) Å3, Z = 16; 2 in the monoclinic space group P21/c with a = 7.262(1), b = 21.970(2), c = 10.051(1) Å, β = 105.01(1)°, V = 1548.8(2) Å3, Z = 4. Both of them are double‐stranded chains and further assembled into three‐dimensional networks by π‐π stacking interactions. 1 and 2 are stable in air, and show blue photoluminescence at 415 nm and 410 nm, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号