首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A unique 2:1 cocrystal of mixed Cu(I)/Cu(II) complexes [Cu(I)(H2CPz2)(MeCN)2](ClO4) (1) and [Cu(II)(H2CPz2)2(ClO4)2] (4), a novel ferromagnetic ClO(4-)-bridged bis(mu-hydroxo)dicopper(II) complex, [Cu2(H2CPz2)2(OH)2(ClO4)](ClO4)(CH3CN)(0.5) (5), and a bischelated copper(I) complex, [Cu(H2CPz2)2](ClO4) (2), prepared from a one-pot reaction of [Cu(MeCN)4](ClO4) and H2CPz2, are described. The structures of these complexes have been determined by X-ray crystallographic methods. The Cu(I)-N(acetonitrile) bond distances in complex 1 are nonequivalent (1.907(8) and 2.034(9) A), leading to the dissociation of one MeCN to form a Y-shaped complex, [Cu(I)(H2CPz2)(MeCN)](ClO4) (3), which is oxidized readily in air to form complex 5 with a butterfly Cu2O2 core.  相似文献   

2.
Two copper(II) complexes [CuL(1)Cl]ClO(4) and [CuL(2)MeCN](ClO(4))(2)xH(2)O were synthesized (L(1)= 1-(benzimidazole-2-ylmethyl)-1,4,7-triazacyclononane, L(2)= 1,4-bis(benzimidazole-2-ylmethyl)-1,4,7-triazacyclonone). The benzimidazole groups were N-substituents of tacn, and the complexes are more stable than their parents. They are able to catalyse the dismutation of superoxide anion in aqueous solutions at physiological pH and in bovine serum albumin solution (0.5 mg ml(-1)). X-ray structure analysis and EPR and electronic spectra show that the structure of complex is more similar to the Cu(II) centre of Cu(2)Zn(2)SOD than that. Comparing with other Cu(II) complexes, the complex possesses both high SOD activity and highly thermodynamic stability.  相似文献   

3.
Two new fluorescent chemosensors for metal ions have been synthesized and characterized, and their photophysical properties have been explored; they are the macrocycles 5-(2-quinolinylmethyl)-2,8-dithia-5-aza-2,6-pyridinophane (L5) and 5-(5-chloro-8-hydroxyquinolinylmethyl)-2,8-dithia-5-aza-2,6-pyridinophane (L6). Both systems have a pyridyl-thioether-containing 12-membered macrocycle as a binding site. The coordination properties of these two ligands toward CuII, ZnII, CdII, HgII, and PbII have been studied in MeCN/H2O (1:1 v/v) and MeCN solutions and in the solid state. The stoichiometry of the species formed at 25 degrees C have been determined from absorption, fluorescence, and potentiometric titrations. The complexes [CuL5](ClO4)(2).1/2MeCN, [ZnL5(H2O)](ClO4)2, [HgL5(MeCN)](ClO4)2, [PbL5(ClO4)2], [Cu3(5-Cl-8-HDQH-1)(L6H-1)2](ClO4)(3).7.5H2O (HDQ=hydroxyquinoline), and [Cu(L6)2](BF4)(2).2MeNO2 have also been characterized by X-ray crystallography. A specific CHEF-type response of L5 and L6 to the presence of ZnII and CdII, respectively, has been observed at about pH 7.0 in MeCN/H2O (1:1 v/v) solutions.  相似文献   

4.
Reaction of the dinuclear complex [Mn2O2(bpy)4](ClO4)3 with H3cht (cis,cis-l,3,5-cyclohexanetriol) in MeCN produces the complex [Mn3(Hcht)2(bpy)4](ClO4)3.Et2O.2MeCN (1.Et2O.2MeCN). Dc magnetic susceptibility measurements reveal the existence of weak ferromagnetic exchange between the three Mn ions, leading to a spin ground state of S = 7, with D = -0.23 cm(-1). W-Band (94 GHz) EPR measurements on restrained powdered crystalline samples confirm the S = 7 ground state and determine the ground state zero-field splitting (ZFS) parameters of D = -0.14 cm(-1) and B4(0)= +1.5 x 10(-5) cm(-1). The apparent 4th order behaviour is due to a breakdown of the strong exchange limit approximation (J approximately d, the single-ion ZFS). Single crystal dc relaxation decay and hysteresis loop measurements reveal the molecule to have an appreciable energy barrier to magnetization relaxation, displaying low temperature sweep rate and temperature-dependent hysteresis loops. Density functional studies confirm the ferromagnetic exchange coupling between the Mn ions.  相似文献   

5.
The coordination chemistry of the N-aminopropyl pendant arm derivatives (L1c-4c) of the mixed donor macrocyclic ligands [12]aneNS2O, [12]aneNS3, [12]aneN2SO, and [15]aneNS2O2(L1a-4a) towards Cu(II), Zn(II), Cd(II), Hg(II), and Pb(II) in aqueous solution has been investigated. The protonation and stability constants with the aforementioned metal ions were determined potentiometrically and compared, where possible, with those of the unfunctionalised macrocycles. The measured values show that Hg(II) and Cu(II) in water have the highest affinity for all ligands considered, with the N-aminopropyl pendant arm weakly coordinating the metal centres. Crystals suitable for X-ray diffraction analysis were grown for the perchlorate salt (H2L1c)(ClO4)2.dmf, and for the 1 : 1 complexes [Cd(L3a)(NO3)2](1), [Cu(L4a)dmf](ClO4)2(2), [Zn(L1c)(ClO4)]ClO4(3), [Cd(L1c)(NO3)]NO3(4), and [Hg(L2c)](ClO4)2(5). Their structures show the macrocyclic ligands adopting a folded conformation, which for the 12-membered systems can be either [2424] or [3333] depending on the nature of the metal ion. L1c-4c were also functionalised at the primary amino pendant group with different fluorogenic subunits. In particular the N-dansylamidopropyl (Lnd, n= 1-4), and the N-(9-anthracenylmethyl)aminopropyl (Lne, n= 1, 2, 4, ) pendant arm derivatives of L1a-4a were synthesised and their optical responses to the above mentioned metal ions were investigated in MeCN/H2O (4 : 1 v/v) solutions.  相似文献   

6.
廖代正  林兵  王耕霖 《化学学报》1992,50(3):269-273
合成和表征了两种新的异双核配合物[Cu(oxap)Mn(L)~2](ClO~4)~2, oxap表示N,N'-双(2-氨基丙基)草酰胺根阴离子, L表示1,10-邻菲咯啉(phen)和5-硝基-1,10-邻菲咯啉(NO~2-phen)。测定了配合物的变温磁化率(4.2-300K), 并用最小二乘法和从自旋Hamiltonian算符, ^^H=-2J^^S~1.^^S~2-D^^S~Z~1导出的磁方程拟合。求得交换积分为J=-74.72cm^-^1(phen)和J=-76.39cm^-^1(No~2-phen), 表明两个Cu(II)-Mn(II)双核配合物中有中等强度的反铁磁超交换作用。  相似文献   

7.
The dinucleating ligand, 2,6-bis{[(2-(2-pyridyl)ethyl)(2-pyridylmethyl)-amino]-methyl}-4-methylphenol) (L1OH) reacts with Mn(ClO4)2.6H2O to form the dinuclear complex [Mn2(II,II)(L1O)(mu-OOCCH3)2]ClO4 (1). The electrolytic oxidation of 1 at 0.7 V (vs Ag/AgCl) produces the mixed valent complex [Mn2(II,III)(L1O)(mu-OOCCH3)2](ClO4)2 (1ox) quantitatively, while electrolysis at 0.20 V converts 1ox back to 1. X-ray crystallographic structures show that both 1 and 1ox are dinuclear complexes in which the two manganese ions are each in distorted octahedral coordination environments bridged by the phenoxo oxygen and two acetate ions. The structural changes that occur upon the oxidation 1 to 1ox suggest an extended pi-bonding system involving the phenoxo ring C-O(phenoxo)-Mn(II)-N(pyridyl) chain. In addition, as 1 is oxidized to 1ox, the rearrangements in the coordination sphere resulting from the oxidation of one Mn(II) ion to Mn(III) are transmitted via the bridging Mn-O(phenoxo) bonds and cause structural changes that render the site of the second manganese ion unfit for the +3 state and hence unstable to reduction. Thus the electrolytic oxidation of 1ox in acetonitrile at 1.20 V takes up slightly greater than 1 F of charge/mol of 1ox, but the starting complex, 1ox, is recovered, showing the instability of the Mn2(III,III) state that is formed with respect to reduction to 1ox. Variable-temperature magnetic susceptibility measurements of 1 and 1ox over the temperature range from 1.8 to 300 K can be modeled with magnetic coupling constants J = -4.3 and -4.1 cm(-1), respectively showing the weak antiferromagnetic coupling between the two manganese ions in each dinuclear complex, which is commonly observed among similar phenoxo- and bis-1,3-carboxylato-bridged dinuclear Mn2(II,II) and Mn2(II,III) complexes.  相似文献   

8.
The complexes of general formula [ML]2[Mn(NCS)4](ClO4)2 (where M = Cu(II), Ni(II); L = N-dl-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene) were obtained and the crystal structures of both heteronuclear compounds were determined at 173 K. Complex [CuL]2[Mn(NCS)4](ClO4)2 (1) crystallizes in a monoclinic space group, C2/c, with a = 41.297(9) A, b = 7.571(2) A, c = 16.417(4) A, beta = 96.97(15) degrees, Z = 8, whereas complex [NiL]2[Mn(NCS)4](ClO4)2.H2O (2) crystallizes in a monoclinic space group, P2/c, with a = 21.018(5) A, b = 7.627(2) A, c = 16.295(4) A, beta = 104.47(1) degrees, Z = 4. The magnetic behaviour of (1) and (2) has been investigated over the temperature range 1.8-300 K. Complex (1) displays ferromagnetic coupling inside the trinuclear core of CuMnCu and compound (2) behaves like a mononuclear Mn(II) system. The magnetic properties of the second compound (2) with a similar trinuclear structure shows that Ni(II) ions have a diamagnetic character and a rather weak zero-field splitting at the central Mn(II) ion occurs. Finally, the magnitudes of the Cu(II)-M(II) interactions with M = Ni and Mn have been compared and qualitatively justified.  相似文献   

9.
Wen HR  Wang CF  Song Y  Zuo JL  You XZ 《Inorganic chemistry》2005,44(24):9039-9045
One-dimensional chiral copper(II) and manganese(II) coordination polymers with single asymmetric end-to-end (EE) azide bridges, [Cu(R-L)2(N3)]n(ClO4)n (1), [Cu(S-L)2 (N3)]n(ClO4)n (2), [Mn(R-L)2(N3)]n(ClO4)n (3), and [Mn(S-L)2(N3)]n(ClO4)n (4) (R-L or S-L = R- or S-pyridine-2-carbaldehyde-imine), have been synthesized, using azide ions as bridging groups and chiral Schiff bases as auxiliary ligands, and characterized. The crystal structure determination of complexes 1 and 2 reveals the formation of one-dimensional chiral chains, in which the central Cu(II) ion is six-coordinate in the form of an elongated octahedron. Complex 3 consists of chiral helical polymeric chains, in which the central Mn(II) has a slightly distorted octahedral geometry. They all crystallize in the chiral space group P2(1). Complexes 1 and 2 are rare examples that exhibit ferromagnetic interaction between copper(II) ions through the single end-to-end azido bridge. Fitting the susceptibility data for 1 using a 1D uniform chain model led to the parameters J = 0.70(3) cm(-1), g = 2.06(2), and zj' = 0.07(2) cm(-1). The magnetic studies on 3 and 4 show that there is weak antiferromagnetic coupling between the manganese(II) ions.  相似文献   

10.
A Prussian blue (PB) type material containing hexacyanovanadate(III), Mn(II)1.5[V(III)(CN)6].(0.30)MeCN (1), was formed from the reaction of [V(III)(CN)6](3-) with [Mn(NCMe)6](2+) in MeCN. This new material exhibits ferrimagnetic spin- or cluster-glass behavior below a Tc of 12K with observed magnetic hysteresis at 2 K (Hcr = 65 Oe and Mrem = 730 emu.Oe/mol). Reactions of [V(III)(CN)6](3-) with [M(II)(NCMe)6](2+) (M = Fe, Co, Ni) in MeCN lead to either partial (M = Co) or complete (M = Fe, Ni) linkage isomerization, resulting in compounds of Fe(II)(0.5)V(III)[Fe(II)(CN)6].(0.85)MeCN (2), (NEt4)(0.10)Co(II)(1.5- a)V(II)a[Co(III)(CN)6]a [V(III)(CN)6](1-a)(BF4)(0.10).(0.35)MeCN (3), and (NEt4)(0.20)V(III)[Ni(II)(CN)4](1.6).(0.10)MeCN (4) compositions. Compounds 2-4 do not magnetically order as a consequence of diamagnetic cyanometalate anions being present, i.e., [Fe(II)(CN)6](4-), [Co(III)(CN)6](3-), and [Ni(II)(CN)4](2-). Incorporation of [V(III)(CN)6](3-) into PB-type materials is synthetically challenging because of the lability of the cyanovanadate(III) anion.  相似文献   

11.
We report here the first pentanuclear Ba(II) complex of a new tri-aza, tri-oxa macrocycle with two carboxymethyl "arms" pending from two N atoms, H2L2. The crystal structure corresponds to the formula [Ba5(H0.375L2)4(ClO4)(CH3CH2OH)(H2O)2](ClO4)2.5 x 9.5H2O and reveals the presence of four molecules of the ligand surrounding five Ba(II) ions, giving rise to an unusual structure with the metal ions inside a spherical organic cavity.  相似文献   

12.
Gao EQ  Bai SQ  He Z  Yan CH 《Inorganic chemistry》2005,44(3):677-682
A new tetranuclear manganese(II) compound, [Mn4L6](ClO4)2 (L is the Schiff base derived from 2-pyridylaldehyde and 2-aminophenolate), has been synthesized and characterized structurally and magnetically. The compound is the first example of tetramanganese clusters with centered planar trigonal topology in which a central Mn(II) ion is connected with three peripheral Mn(II) ions by double phenoxo bridges, generating a trigonal Mn[(mu-phenoxo)2Mn]3 core. Magnetic studies have demonstrated a very weak ferromagnetic interaction between the central and peripheral Mn(II) ions, which leads to a high-spin ground state (S = 10). The ferromagnetic interaction has been tentatively related to distortion of the metal coordination environments after comparing the magnetic and structural data of the known Mn(II) complexes with similar bridging moieties.  相似文献   

13.
The reaction of [Mn(dmptacn)OH(2)](2+) and [Ni(dmptacn)OH(2)](2+) (dmptacn = 1,4-bis(2-pyridylmethyl)-1,4,7-triazacyclononane) with each cyano ligand on ferricyanide results in the assembly of heteropolynuclear cations around the cyanometalate core and reduction of Fe(III) to Fe(II). In [[Mn(dmptacn)CN](6)Fe][ClO(4)](8) x 5H(2)O (1) and [[Ni(dmptacn)CN](6)Fe][ClO(4)](8) x 7H(2)O (2), ferrocyanide is encapsulated by either six Mn(II) or Ni(II) dmptacn moieties. These same products are obtained when ferrocyanide salts are used in the synthesis instead of ferricyanide. A binuclear complex, [[Mn(dmptacn)](2)CN][ClO(4)](3) (3), has also been formed from KCN and [Mn(dmptacn)OH(2)](2+). For both Mn(II) and Ni(II), the use of the pentadentate dmptacn ligand facilitates the formation of discrete cations in preference to networks or polymeric structures. 1 crystallizes in the trigonal space group R3 macro (No. 148) with a = 30.073(3) A, c = 13.303(4) A, and Z = 3 and is composed of heptanuclear [[Mn(dmptacn)CN](6)Fe](8+) cations whose charge is balanced by perchlorate counteranions. Weak H-bonding interactions between neighboring heptanuclear cations and some perchlorate counterions generate an infinite 1D chain of alternating [[Mn(dmptacn)CN](6)Fe](8+) and ClO(4)(-) ions running along the c-axis. Complex 3 crystallizes in the orthorhombic space group Pbcn (No. 60) with a = 16.225(3) A, b = 16.320(2) A, c = 18.052(3) A, and Z = 8 and is composed of binuclear [[Mn(dmptacn)](2)CN](3+) cations in which the cyano-bridged Mn(II) centers are in a distorted trigonal prismatic geometry. Variable temperature magnetic susceptibility measurements have revealed the presence of a weak ferromagnetic interaction between the paramagnetic Mn(II) centers in 1, mediated either by the -NC-Fe-CN- bridging units or by Mn-NH...ClO(4-)...NH-Mn intercluster pathways.  相似文献   

14.
Du ZY  Prosvirin AV  Mao JG 《Inorganic chemistry》2007,46(23):9884-9894
Hydrothermal reactions of manganese(II) salts with m-sulfophenylphosphonic acid (m-HO3S-Ph-PO3H2, H3L) and 1,10-phenanthroline (phen) led to six novel manganese(II) sulfonate-phosphonates, namely, [Mn2(HL)2(phen)4][Mn2(HL)2(phen)4(H2O)](2).6H2O (1), [Mn4(L)2(phen)8(H2O)2][ClO4](2).3H2O (2), [Mn(phen)(H2O)4]2[Mn4(L)4(phen)4].10H2O (3), [Mn6(L)4(phen)8(H2O)2].4H2O (4), [Mn6(L)4(phen)8(H2O)2].24H2O (5), and [Mn6(L)4(phen)6(H2O)4].5H2O (6). The structure of 1 contains two types of dinuclear manganese(II) clusters, and 2-3 exhibit two types of tetranuclear manganese(II) cluster units. 4-5 feature two different types of isolated hexanuclear manganese(II) clusters, whereas the hexanuclear manganese(II) clusters in 6 are bridged by sulfonate-phosphonate ligands into a 1D chain. Magnetic property measurements indicate that there exist weak antiferromagnetic interactions between magnetic centers in all six compounds.  相似文献   

15.
The reaction of (NBu4)3[V(III)(ox)3] (1, ox = oxalate) and M(II) (M = Fe, Co, Ni, Cu) ions in MeCN, leads to the isolation of V-based coordination polymers of [N(n-Bu)4][Fe(II)V(II)I(ox)3].0.30[[N(n-Bu)4](BF4)] (2), [N(n-Bu)4][Co(II)V(III)(ox)3].0.75[[N(n-Bu)4](BF4)] (3), [N(n-Bu)4][Ni(II)V(III)(ox)3].0.20[[N(n-Bu)4](BF4)].0.20MeCN (4), and [N(n-Bu)4][Cu(II)V(III)(ox)2](BF4)2 (5) composition. Due to the lability of [V(III)(ox)3]3- to dissociate ox2-, these compounds cannot be prepared from aqueous media. 5 is best described as [N(n-Bu)4][V(III)Cu(II)(ox)2](BF4)2, and 2, 3, 4, and 5 are proposed to have a layered (2-D) motif for the MM(ox)x (x = 2, 3) extended framework. The [V(III)Cu(II)(ox)2] composition of 5 is reported for the first time for a bimetallic oxalate. 2 shows a weak antiferromagnetic interaction between Fe(II), S = 2 and V(III), S = 1 ions (theta = -9.4 K) within the 2-D layers. 3 and 5 do not magnetically order above 2 K. 4 magnetically order as ferromagnets below 2.55 K [taken as the onset of magnetization in chi'(T)], and has a glass transition temperature (chi'(max) at 1000 Hz) at 2.26 K.  相似文献   

16.
The reaction of [Mn3O(O2CR)6(py)3](ClO4) (R = Me, Et) with methyl 2-pyridyl ketone oxime (mpkoH) in a 1:3 molar ratio in MeOH/MeCN leads to [Mn3O(O2CR)3(mpko)3](ClO4) in 80-90% isolated yield. Ferromagnetic exchange interactions between the three MnIII ions in the nonplanar [MnIII3O]7+ triangular core lead to a spin ground state of S = 6; single-crystal studies reveal the temperature and sweep rate dependent hysteresis loops expected for a single-molecule magnet.  相似文献   

17.
The dinucleating macrocyclic ligands (L(2;2))(2-) and (L(2;3))(2-), comprised of two 2-[(N-methylamino)methyl]-6-(iminomethyl)-4-bromophenolate entities combined by the -(CH(2))(2)- chain between the two aminic nitrogen atoms and by the -(CH(2))(2)- or -(CH(2))(3)- chain between the two iminic nitrogen atoms, have afforded the following M(II)Cu(II) complexes: [CoCu(L(2;2))](ClO(4))(2).MeCN (1A), [NiCu(L(2;2))](ClO(4))(2) (2A), [ZnCu(L(2;2))](ClO(4))(2).0.5MeCN.EtOH (3A), [CoCu(L(2;3))(MeCN)(2-PrOH)](ClO(4))(2) (4A), [NiCu(L(2;3))](ClO(4))(2) (5A), and [ZnCu(L(2;3))](ClO(4))(2).1.5DMF (6A). [CoCu(L(2;2))(MeCN)(3)](ClO(4))(2) (1A') crystallizes in the monoclinic space group P2(1)/n, a = 11.691(2) A, b = 18.572(3) A, c = 17.058(3) A, beta= 91.18(2) degrees, V = 3703(1) A(3), and Z = 4. [NiCu(L(2;2))(DMF)(2)](ClO(4))(2) (2A') crystallizes in the triclinic space group P(-)1, a = 11.260(2) A, b = 16.359(6) A, c = 10.853(4) A, alpha= 96.98(3) degrees, beta= 91.18(2) degrees, gamma= 75.20(2) degrees, V = 1917(1) A(3), and Z = 2. 4A crystallizes in the monoclinic space group P2(1)/c, a = 15.064(8) A, b = 11.434(5) A, c = 21.352(5) A, beta= 95.83(2)degrees, V = 3659(2) A(3), and Z = 4. The X-ray crystallographic results demonstrate the M(II) to reside in the N(amine)(2)O(2) site and the Cu(II) in the N(imine)(2)O(2) site. The complexes 1-6 are regarded to be isomeric with [CuCo(L(2;2)))](ClO(4))(2).DMF (1B), [CuNi(L(2;2)))](ClO(4))(2).DMF.MeOH (2B), [CuZn(L(2;2)))](ClO(4))(2).H(2)O (3B)), [CuCo(L(2;3)))](ClO(4))(2).2H(2)O (4B), [CuNi(L(2;3)))](ClO(4))(2) (5B), and [CuZn(L(2;3)))](ClO(4))(2).H(2)O (6B) reported previously, when we ignore exogenous donating and solvating molecules. The isomeric M(II)Cu(II) and Cu(II)M(II) complexes are differentiated by X-ray structural, magnetic, visible spectroscopic, and electrochemical studies. The two isomeric forms are significantly stabilized by the "macrocyclic effect" of the ligands, but 1A is converted into 1B on an electrode, and 2A is converted into 2B at elevated temperature.  相似文献   

18.
Two new mixed aza-thia crowns 5-aza-2,8-dithia[9]-(2,9)-1,10-phenanthrolinophane (L(4)) and 2,8-diaza-5-thia[9]-(2,9)-1,10-phenanthrolinophane (L(7)) have been synthesized and characterized. The coordination behavior of L(4) and L(7) toward the metal ions Cu(II), Zn(II), Pb(II), Cd(II), Hg(II), and Ag(I) was studied in aqueous solution by potentiometric methods, in CD3CN/D2O 4:1 (v/v) by (1)H NMR titrations and in the solid state. The data obtained were compared with those available for the coordination behavior toward the same metal ions of structurally analogous mixed donor macrocyclic ligands L(1)-L(3), L(5), L(6): all these contain a phenanthroline subunit but have only S/O/N(aromatic) donor groups in the remaining portion of the ring and are, therefore, less water-soluble than L(4) and L(7). The complexes [Cd(NO3)2(L(5))], [Pb(L(7))](ClO4)2 x 1/2MeCN, [Pb(L(4))](ClO4)2 x MeCN, and [Cu(L(7))](ClO4)2 x 3/2MeNO2 were characterized by X-ray crystallography. The efficacy of L(1)-L(7) in competitive liquid-liquid metal ion extraction of Cu(II), Zn(II), Cd(II), Pb(II), Ag(I), and Hg(II) was assessed. In the absence of Hg(II), a clear extraction selectivity for Ag(I) was observed in all systems investigated.  相似文献   

19.
An N(4) tetradentate [1 + 1] Schiff base metal free macrocycle HL was prepared, by 1?:?1 condensation of 2,2'-iminobisbenzaldehyde (1) and diethylenetriamine, and characterised. Seven mononuclear complexes, [Zn(II)L(py)](BF(4)) (2), [Cu(II)L](BF(4))]·H(2)O (3), [Ni(II)L](BF(4))·H(2)O (4), [Co(II)L](BF(4))]·H(2)O (5), Fe(III)L(BF(4))(2)·2H(2)O·MeCN (6), [Co(III)L(NCS)(2)]·0.3py (7) and [Fe(III)L(NCS)(2)] (8), of L(-) are reported. The Cu(II) and Ni(II) complexes were prepared by a template approach whereas the others were accessed by metallation of pre-formed HL. The X-ray crystal structure determinations show that [Cu(II)L](BF(4)) and [Ni(II)L](BF(4)) feature square planar N(4) coordinated Cu(II) and Ni(II) centres, respectively, whereas [Fe(III)L(NCS)(2)]·NO(2)Me features an octahedral N(6) coordinated Fe(III) centre (two NCS anions bound axially) and the Zn(II) complex, which crystallised as 2{[Zn(II)L(py)](BF(4))}·py, features square pyramidal Zn(II) ions (a pyridine molecule bound axially). In all cases the N(4) macrocycle is bound equatorially to the metal ion. Cyclic voltammograms of the soluble BF(4) complexes, 2-5, were carried out in MeCN vs. 0.01 mol L(-1) AgNO(3)/Ag and revealed multiple, mostly irreversible or quasi-reversible, redox processes. The Zn(II) complex 2 exhibited two irreversible oxidation processes and one irreversible reduction process, all of which are ligand-centered. The Ni(II) complex 4 showed a process with a weak return wave at E(m) = +0.57 V (ΔE = 0.05 V). Interestingly, after controlled potential coulometry experiments on 2, 3 and 4 (at +0.48, +0.61 and +0.71 V which transferred 1.2, 1.0 and 1.6 e(-) equiv. per complex, respectively), a new reversible or quasi-reversible process was obtained, with a lower potential than beforehand (E(m) (ΔE)/V = +0.16 (0.08), +0.31 (0.13) and +0.45 (0.11) respectively).  相似文献   

20.
The syntheses and structural, spectral, and electrochemical characterization of the dioxo-bridged dinuclear Mn(III) complexes [LMn(mo-O)(2)MnL](ClO(4))(2), of the tripodal ligands tris(6-methyl-2-pyridylmethyl)amine (L(1)) and bis(6-methyl-2-pyridylmethyl)(2-(2-pyridyl)ethyl)amine (L(2)), and the Mn(II) complex of bis(2-(2-pyridyl)ethyl)(6-methyl-2-pyridylmethyl)amine (L(3)) are described. Addition of aqueous H(2)O(2) to methanol solutions of the Mn(II) complexes of L(1) and L(2) produced green solutions in a fast reaction from which subsequently precipitated brown solids of the dioxo-bridged dinuclear complexes 1 and 2, respectively, which have the general formula [LMn(III)(mu-O)(2)Mn(III)L](ClO(4))(2). Addition of 30% aqueous H(2)O(2) to the methanol solution of the Mn(II) complex of L(3) ([Mn(II)L(3)(CH(3)CN)(H(2)O)](ClO(4))(2) (3)) showed a very sluggish change gradually precipitating an insoluble black gummy solid, but no dioxo-bridged manganese complex is produced. By contrast, the Mn(II) complex of the ligand bis(2-(2-pyridyl)ethyl)(2-pyridylmethyl)amine (L(3a)) has been reported to react with aqueous H(2)O(2) to form the dioxo-bridged Mn(III)Mn(IV) complex. In cyclic voltammetric experiments in acetonitrile solution, complex 1 shows two reversible peaks at E(1/2) = 0.87 and 1.70 V (vs Ag/AgCl) assigned to the Mn(III)(2) <--> Mn(III)Mn(IV) and the Mn(III)Mn(IV) <--> Mn(IV)(2) processes, respectively. Complex 2 also shows two reversible peaks, one at E(1/2) = 0.78 V and a second peak at E(1/2) = 1.58 V (vs Ag/AgCl) assigned to the Mn(III)(2) <--> Mn(III)Mn(IV) and Mn(III)Mn(IV) <--> Mn(IV)(2) redox processes, respectively. These potentials are the highest so far observed for the dioxo-bridged dinuclear manganese complexes of the type of tripodal ligands used here. The bulk electrolytic oxidation of complexes 1 and 2, at a controlled anodic potential of 1.98 V (vs Ag/AgCl), produced the green Mn(IV)(2) complexes that have been spectrally characterized. The Mn(II) complex of L(3) shows a quasi reversible peak at an anodic potential of E(p,a) of 1.96 V (vs Ag/AgCl) assigned to the oxidation Mn(II) to Mn(III) complex. It is about 0.17 V higher than the E(p,a) of the Mn(II) complex of L(3a). The higher oxidation potential is attributable to the steric effect of the methyl substituent at the 6-position of the pyridyl donor of L(3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号