首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Monochromatic 334-nm radiation delivered under aerobic conditions inactivates the genetic activity (ability to transform auxotrophic recipient cells to nutritional prototrophy) of isolated transforming Bacillus subtilis DNA. The presence of superoxide dismutase (SOD), catalase, and mannitol reduces the 334-nm inactivation. The rate of inactivation of the genetic activity by 334-nm radiation is enhanced fivefold by the sensitizer 2-thiouracil (s2Ura). This enhancement is substantially reversed when the irradiations are performed in the presence of mannitol, and, to a lesser extent, SOD. Catalase slightly reduces the s2Ura enhancement of 334-nm inactivation of transforming activity. Backbone breaks induced in the same DNA by aerobic 334-nm radiation were also enhanced markedly by the presence of s2Ura; this enhancement was reversed by the presence of mannitol and, to a lesser extent, SOD during irradiation. Catalase had no effect upon s2Ura-enhanced, 334-nm-induced SSBs. Whereas DNA breakage may be responsible for a portion of the inactivation of the DNA by the photosensitized reaction between s2-Ura and 334-nm radiation, it is not the only inactivating lesion, because the yield of SSBs per lethal hit per unit length of DNA is not constant for all the irradiation conditions studied. The results support a complex role for active oxygen species in inactivation of transforming activity and DNA breakage by s2Ura-enhanced 334-nm radiation. They are also consistent with the formation of superoxide anion, hydroxyl radical, and possibly also singlet molecular oxygen, generated from ground-state molecular oxygen by reactive s2Ura in both Type I and II reactions.  相似文献   

2.
Abstract— An action spectrum for the immediate induction in DNA of single-strand breaks (SSBs, frank breaks plus alkali-labile sites) in human P3 teratoma cells in culture by monochromatic 254-, 270-, 290-, 313-, 334-, 365-, and 405-nm radiation is described. The cells were held at +0.5C during irradiation and were Iysed immediately for alkaline sedimentation analysis following the irradiation treatments. Linear fluence responses were observed over the fluence ranges studied for all energies. Irradiation of the cells in a D2O environment (compared with the normal H2O environment) did not alter the rate of induction of SSBs by 290-nm radiation, whereas the D2O environment enhanced the induction of SSBs by 365- and 405-nm irradiation. Analysis of the relative efficiencies for the induction of SSBs, corrected for quantum efficiency and cellular shielding, revealed a spectrum that coincided closely with nucleic acid absorption below 313 nm. At longer wavelengths, the plot of relative efficiency vs . wavelength contained a minor shoulder in the same wavelength region as that observed in a previously obtained action spectrum for stationary phase Bacillus subtilis cells. Far-UV radiation induced few breaks relative to pyrimidine dimers, whereas in the near-UV region of radiation, SSBs account for a significant proportion of the lesions relative to dimers, with a maximum number of SSBs per lethal event occurring at 365-nm radiation.  相似文献   

3.
Abstract— The photooxidation of epinephrine, sensitized by methylene blue or by chlorophylls, excited with red light, involves the reduction of two molecules of oxygen to hydrogen peroxide per molecule of epinephrine oxidized to adrenochrome. The initial rates of these reactions are not affected by low concentrations of catalase. In 99 mol % D2O, rates of methylene blue sensitized photooxidations are accelerated as much as 5.2 times over rates in ordinary water. Azide anion is a more effective inhibitor of this reaction in D2O than in H2O. Half maximal inhibitions are obtained by 1.3 mM azide in H2O and by 0.1 mAf azide in D2O. Isotope effects and azide sensitivities point to photooxidation of epinephrine in D2O primarily by a singlet oxygen pathway; in H2O, non-singlet oxygen pathways become more predominant. Superoxide dismutase (SOD) markedly inhibits rates of the photooxidations in H2O and in D2O; about 25% at 10-9 M SOD, and 50% at 10-6 M SOD in H2O. In the photooxidation in H2O, both by non-singlet and singlet oxygen mechanisms, the amount of superoxide produced is equivalent to the amount of O2 consumed in the photooxidation of epinephrine; the superoxide thus formed participates in the oxidation of epinephrine.  相似文献   

4.
Abstract In the presence of the photosensitizer riboflavin at high fluence rates a photoproduct, most probably H2O2, is formed which causes negative phototaxis in the colorless flagellate Polytomella magna . The aim of this study was to find out whether H2O2 is produced in a type I or II reaction. As has been shown, 1O2 quenchers either do not influence the photodynamic action of riboflavin (furfuryl ethanol, DPBF, l -histidine, crocetin) or show slight quenching effects only at very high concentrations ≧ 10−2 M (DABCO, DMF, imidazole). D2O is toxic to P. magna even in 1:1 and 1:2 mixtures with H2O. On the other hand, the quenching effect of 1,4-benzoquinone, highly indicative for the type I pathway, is more than two orders of magnitude stronger than the one of the above mentioned 1O2 quenchers. The results suggest that H2O2 is produced in a type I reaction. Superoxide does not seem to be involved since superoxide dismutase does not diminish the photodynamic effect of riboflavin.  相似文献   

5.
Abstract— Apparent DNA-protein crosslinking induced by monochromatic 290 and 405 nm Tadiations was measured in cultured human P3 teratocarcinoma cells with DNA alkaline elution techniques. The rates of the induction of crosslinks by 290 nm radiation were the same when the cells were irradiated either aerobically or anaerobically or when the cells were in an H2O or D2O aqueous environment. With 405 nm radiation, anaerobic irradiation reduced the induction of the crosslinks (dose modifying factor is about 0.2), and about twice as many crosslinks were observed when the cells were irradiated in an environment of D2O rather than H2O. The results are consistent with the hypothesis that far-UV radiation induces DNA-protein crosslinks by a direct mechanism, whereas near-UV radiation induces crosslinks via indirect photodynamic photosensitizations in which unidentified cellular endogenous photosensitizers and reactive species of oxygen are used.  相似文献   

6.
Abstract— The autoxidation of the catecholamine neurotoxin 6-hydroxydopamine (20 μ M ) gave rise to a chemiluminescence which was greatly stimulated by FeSO4 (20 μ M ) or by hydrogen peroxide addition (20 μ M to 2 m M ). The luminescence of both 6-hydroxydopamine alone or 6-hydroxydopamine plus hydrogen peroxide was strongly inhibited by catalase and by superoxide dismutase (both at 10 μg/m/); bovine serum albumin at 10 μg/m/ had no inhibitory effect. The luminescence was also strongly inhibited by several potent hydroxyl radical trapping agents and also by low concentrations of the 1O2 quencher DABCO (l,4-diazabicyclo-2.2.2.-octane). Chemiluminescence was greatly enhanced in D2O, a solvent in which 1O2 has a prolonged lifetime. These data demonstrate the involvement of hydrogen peroxide, the superoxide radical and the hydroxyl radical in the chemiluminescence. The data are also consistent with some role for 1O2.  相似文献   

7.
The photobinding of radiolabeled psoralen and 8-methoxypsoralen (8-MOP) to biological macromolecules under conditions that affect the lifetime of singlet oxygen (1O2) is reported. These conditions are: increase of 1O2 lifetime in D2O and 1O2 quenching with DABCO. The photobinding to calf thymus DNA was studied in vitro and the covalent photobinding to DNA and other biological macromolecules (RNA, proteins) was also studied in intact bacteria. The results of the DNA photobinding experiments have been related to the induction of genetic damage in a bacterial test system. In addition, laser flash photolysis has been used to measure the effect of D2O and DABCO on the psoralen and 8-MOP triplet lifetimes. In general D2O increases the triplet lifetimes and DABCO quenches the triplet states with the probable formation of radicals. The results suggest that the covalent photobinding of 8-MOP to various biological macromolecules in situ is a basis for cell damage occurring at various cellular targets. Analysis of the results of the mutagenicity test suggests that in the presence of D2O the mechanism of induction of genetic lesions is not changed and therefore largely seems to be independent of singlet oxygen.  相似文献   

8.
Abstract. The photodynamic inactivation of E. coli by visible light and O2 was found to occur in the presence of the sensitizer rose bengal, immobilized by covalent bonding to polystyrene beads. The demonstrated absence of significant amounts of dissolved rose bengal indicated that an inactivation mechanism based on penetration of sensitizer molecules into the cell's interior could not be operating. Survival curves typically exhibited induction periods followed by rapid exponential death, with 99.99% kill requiring 1–2 h depending on conditions. A mechanism involving the participation of photo-generated singlet excited oxygen O2(1δ) in inactivation of E. coli is proposed. The photodynamic inactivation rate increased significantly in H2O compared with H2O, which is evidence supporting singlet oxygen as an active intermediate, since O2(1δ) has a much longer lifetime in H2O than in H2O. H2O did not act as a short term poison in the absence of sensitizer.  相似文献   

9.
Abstract— Maximum chemiluminescence in a system containing 6-hydroxydopamine (6-OHDA) and H2O2 required the addition of Fe2+:EDTA, oxygen, and lucigenin. In this system luminescence was strongly inhibited by catalase (91% inhibition) or 50 m M mannitol (83%), whereas superoxide dismutase or ascorbate did not significantly change the reaction rate. In the absence of lucigenin, 50 m M mannitol (78%), catalase (76%), or ascorbate (73%) inhibited strongly, while superoxide dismutase inhibited by 60%. Removing EDTA from the lucigenin-containing system caused a 79% decrease in luminescence, while the substitution of desferoxamine for EDTA decreased luminescence by 55%. In the presence of desferoxamine plus EDTA the luminescence increased by 30% in comparison with that seen with EDTA alone. Luminescence in the system containing 6-hydroxydopamine, H2O2, Fe2+:EDTA and lucigenin required the presence of oxygen (93% inhibition anaerobically), consistent with a mechanism involving reductive oxygenation of the lucigenin. It is concluded that luminescence in the presence of lucigenin involves a substantial contribution from H2O2 and Fe2+ mediated by a mannitol-sensitive intermediate (conceivably Fenton-derived hydroxyl radicals). In the absence of lucigenin, superoxide and an ascorbate-labile component are additional important participants in the process.  相似文献   

10.
Amiodarone (AD) therapy for cardiac arrhythmia frequently leads to cutaneous phototoxicity. Amiodarone and its metabolite, desethylamiodarone (DEA), photosensitized hemolysis of red blood cells (RBC) and were phototoxic to lymphocytes. Hemolysis photosensitized by 3.3 μ M AD was partially oxygen dependent and was partially quenched 5 m M sodium azide, 50 m M mannitol, superoxide dismutase (251 U/me e ) and catalase (1500 U/m e ), but was unaffected when H2O was replaced by D2O. These results suggest that membrane damage may be important in the in vivo phototoxicity to AD, that both oxygen dependent and oxygen independent mechanisms may operate, and that active oxygen species such as O2 and hydrogen peroxide may be involved. Photohemolysis was more rapid in the presence of DEA than of AD. However, this may be due to the greater fragility of the cell membrane in the presence of DEA. The greater phototoxicity of DEA than AD towards lymphocytes was not due to greater membrane fragility.  相似文献   

11.
Abstract— The order of inhibition of the photooxidation of chlorophyll a in ethanol and ethanol-benzene is as follows: β-carotene, α-tocopherol, benzoquinone, DABCO, menadione, cholesterol and KI. The quenching of singlet oxygen by β-carotene occurs by a collisional quenching mechanism with a diffusion-controlled rate of 1.7 × 1010 M -1 s-1. Photodecomposition of Chi a is faster in ethanol-D2O than in ethanol-H2O. Photoirradiation (660 nm) of the peridinin-Chl a -protein complex, a photosynthetic light-harvesting pigment isolated from marine dinoflagellates, did not show any photo-decomposition of its Chi a in H2O or D2O, even after an extended period (12 h) of irradiation. However, the carotenoid, peridinin, in the photosynthetic antenna pigment was photobleached (ca. 10%) during the irradiation. We conclude that the singlet oxygen formed as a result of the Chi photosensitization is immediately quenched by the low-lying triplet state of four peridinin molecules (per Chl a ) bound within the same protein crevice. The carotenoid thus effectively protects Chl a from photodynamic damage, providing a direct proof for the protective role of carotenoids in the photosynthetic pigment complex.  相似文献   

12.
ACTION OF HYDROGEN PEROXIDE ON HUMAN FIBROBLAST IN CULTURE   总被引:6,自引:0,他引:6  
Abstract— Human fibroblasts in culture lose the capacity of proliferating when exposed to hydrogen peroxide in the concentration range of 1 to 10 μ M . The toxicity of H2O2 to xeroderma pigmentosum cells (XP12RO). defective in excision repair of lesions produced by UV-irradiation, was about twice as high as to cells proficient in excision repair (VA13). This compound produces single-strand breaks in intracellular DNA but not in purified DNA. These breaks are in situ physical discontinuities rather than alkali-labile bonds, and their generation occurs at the same extent at 4°C and 37° indicating that they are not produced by an endonuclease. The results favor the hypothesis that H2O2 reacts in the cell producing a radical species which brings about the formation of DNA single-strand breaks. These breaks are effectively repaired by both XP12RO and VA13 fibroblasts. The possible reason for the lethality of H2O2 is discussed.  相似文献   

13.
Abstract— Irradiation (λmax 447 nm; 58.5 W m-2) of a microsomal membrane fraction of corn coleoptiles for 5 min in the presence of the in vivo concentration of riboflavin inactivates the tonoplast-type H+-ATPase. This inhibition is O2-dependent, is enhanced in D2O and suppressed by NaN3, indicating participation of singlet molecular oxygen in the inactivating mechanism. Besides singlet oxygen, the superoxide anion (O2-) is generated during irradiation, which obviously has no effect on the H+-pumping activity. However, in the presence of superoxide dismutase (SOD), O2- is transformed into H2O2 which causes an additional strong inhibition of H+. ATPase activity. This inhibition can be increased by ethylenediaminetetraacetic acid (EDTA), which is known to be an electron donor of the excited flavin molecule. In contrast, catalase prevents the H2O2-mediated photoinactivation of the H+ -ATPase. The light dependent inactivation of H+-transport does not occur if reduced glutathion (GSH) is added prior to or after irradiation. These results indicate that the blue light mediated inhibition of the H+-ATPase is mediated by singlet oxygen and H2O2 which oxidize essential SH-groups of the enzyme into disulfides. Reduction of the formed disulfides by GSH restores the activity of the enzyme.  相似文献   

14.
Abstract— A Xenon-chloride excimer laser emitting energy at 308 nm was used to induce single-strand breaks (SSBs, frank breaks plus alkali-labile lesions as assayed by alkaline sucrose sedimentation techniques) in purified DNA from Bacillus subtilis . A fluence response study and a peak pulse intensity study were performed. At a pulse energy of 0.1 mJ/pulse, the radiation induced SSBs in a linear fashion (91 SSB/108 Da per MJ/m2) to a maximum exprimental fluence of 1.28 MJ/m2. The pulse intensity study showed that there were no significant changes in DNA breakage (105 SSB/108 Da) between 2.93 times 109 and 5.86 times 1011 W/m2 (0.11 and 22.0 mJ/pulse) at a constant total fluence of 1.1 MJ/m2 (27000 mJ dose). This study has verified and extended previous work by quantifying the yield of SSBs induced in DNA by this laser radiation.  相似文献   

15.
HYDROGEN AND OXYGEN PHOTOPRODUCTION BY TITANATE POWDERS   总被引:1,自引:0,他引:1  
Abstract— Uncoated powders of TiO2 or SrTiO3 did not produce H2 or O2 on UV irradiation of aqueous suspensions of the powders. TiO2 powders coated with platinum or rhodium photoproduced H2 on irradiation (effective wavelengths 334 and 366 nm) and the reaction was stimulated by catalytic quantities of methyl viologen. The turnover numbers for H2 production relative to TiO2 were very low suggesting that the powders were not acting catalytically. Hydrogen production was never stoichiometric with respect to TiO2 and the kinetics of H2 production were first order, not zero order as would be expected for catalytic photolysis of water. Oxygen was never detected and it appears that H2 did not arise from water photolysis but rather from oxidation of reduced sites in TiO2. A rhodium-coated SrTiO3 powder prepared photochemically produced both H2 and O2 on irradiation but the turnover numbers were very low. A Rh-SrTiO3 powder prepared thermally showed higher turnover numbers for H2 photoproduction and may be acting catalytically. However, little O2 was detected with this powder. When the turnover numbers for the different titanate powders were expressed with respect to the number of surface monolayer hydroxyl groups calculated from the surface area of the powders, some turnover numbers greater than one were obtained.  相似文献   

16.
Abstract— Hydroxyl radicals ('OH) are scavenged by 1,4-diazabicyclo[2.2.2]octane (DABCO) at a diffusion-controlled rate of 1.25 ± 0.1 × 109 M -1s-1. Unlike other efficient 'OH scavengers which exhibit protection of bacteria against irradiation both in oxic and hypoxic conditions, DABCO has been shown to protect Serratia marcescens and various strains of Escherichia coli only in oxic conditions.
DABCO appears to eliminate a component of the sensitization afforded by oxygen in all strains of E. coli tested. The level of this protection increases from ∼15% in the wild type AB 1157 to ∼100% in the recA uvrA mutant AB 2480. It is suggested that DABCO protects against lethal events that can occur on macromolecules other than DNA such as the cell membrane.
Results with added glycerol, as well as work in D2O solution, indicate that DABCO is more likely to be acting by scavenging radicals rather than by quenching 1O2. If 1O2 is a component of the sensitization afforded by oxygen, then it is unlikely to be formed in a hydrophilic environment in the cell.  相似文献   

17.
Abstract— The induction of breaks in DNA in vitro caused by 334-nm UV radíation is enhanced by the following compounds (fluence enhancement factors and concentrations used in parentheses): 4-thiouridine (6.9, 1 m M ), 5-methylamino-2-thiouridine (7.5, 1 m M ), 2-thiouracil (41.0, 1 m M ), riboflavin (14.4.0.1 m M ), and the oxidized (6.8, 1 m M ) and reduced (3.4, 1 m M ) forms of nicotinamide adenine dinucleotide. Anoxia and diazobicyclo(2.2.2)octane reduce the number of DNA breaks caused by 334-nm radiation plus 4-thiouridine by 70 and 76%, respectively.  相似文献   

18.
Abstract— The physical quenching of singlet molecular oxygen (1Δg) by amino acids and proteins in D2O solution has been measured by their inhibition of the rate of singlet oxygen oxidation of the bilirubin anion. Steady-state singlet oxygen concentrations are produced by irradiating the oxygenated solution with the 1–06 μm output of a Nd-YAG laser, which absorbs directly in the electronic transition 1Δg+ 1 v →3Σg-. The rate of quenching by most of the proteins studied is approximated by the sum of the quenching rates of their amino acids histidine, tryptophan and methionine, which implies that these amino acids in the protein structure are all about equally accessible to the singlet oxygen. The quenching constants differ from those obtained by the ruby-laser methylene-blue-photosensitized method of generating singlet oxygen, or from the results of steady-state methylene-blue-photosensitized oxidation, where singlet oxygen is assumed to be the main reactive species. The singlet oxygen quenching rates in D2O, pD 8, are (107ℒ mol-1 s-1): alanine 0–2, methionine 3, tryptophan 9, histidine 17, carbonic anhydrase 85, lysozyme 150, superoxide dismutase 260, aposuperoxide dismutase 250.  相似文献   

19.
Abstract— N,N'-bis(2-ethyl-1,3-dioxolane)-kryptocyanine (EDKC), a lipophilic dye with a delocalized positive charge, photosensitizes cells to visible irradiation. In phosphate-buffered saline (PBS), EDKC absorbs maximally at 700 nm (ε= 1.2 × 105 M−1 cm−1) and in methanol, the absorption maximum is at 706 nm (ε= 2.3 × 105 M−1 cm−1). EDKC partitions from PBS into small unilamellar liposomes prepared from saturated phospholipids and into membranes prepared from red blood cells (RBC) and binds to human serum albumin (HSA). The EDKC fluorescence maximum red shifts from 713 nm in PBS to 720–725 nm in liposomes and RBC membranes and the fluorescence intensity is enhanced by factors of 14–35 compared to PBS (φ= 0.0046). EDKC is thermally unstable in PBS (T1/2= 2 h at 1.3 × 10−5 M EDKC), but stable in methanol. In liposomes and RBC membranes, EDKC is 10 times more stable than in PBS, indicating that it is only partially exposed to the aqueous phase. Quenching of EDKC fluorescence in liposomes and RBC membranes by trinitrobenzene sulfonate also indicates that EDKC is not buried within the membranes. Photodecomposition of EDKC was oxygen-dependent and occurred with a low quantum yield (6.4 × 10−4 in PBS). Singlet oxygen was not detected upon irradiation of EDKC in membranes or with HSA since the self-sensitized oxidation of EDKC occurred at the same rate in D2O as in H2O and was not quenched by sodium azide or histidine.  相似文献   

20.
The characteristic fluorescence properties of quercetin-3- O -rhamnoside (QCRM) and quercetin-3- O -rutinoside (QCRT) were studied in CH3OH–H2O and CH3CN–H2O mixed solvents. Although QCRM and QCRT are known as nonfluorescent molecules, significant fluorescence emissions were discovered at 360 nm in CH3OH and CH3CN when they were promoted to the second excited state. The emission band is broad and structureless and the intensity decreases quickly as the H2O composition in the solvent increases. When the amount of H2O exceeds 60% in both mixed solvents, this emission disappears due to the formation of the distorted excited state. This state will be formed due to the strong intermolecular hydrogen bonding between the polar groups of solute and H2O. As the composition of CH3OH or CH3CN in solvent becomes large, the number of molecules having several intramolecular hydrogen bonding increases. Some of these molecules will be changed to a fluorescent species during the decay process, after excitation. The theoretical calculation further supports these results. The change of the lifetimes, quantum yields, and radiative and nonradiative rate constants of molecules was also examined as a function of solvatochromic parameters for CH3OH–H2O and CH3CN–H2O.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号