首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 77 毫秒
1.
A facile and versatile method for the synthesis of Janus graphene oxide (GO) nanosheets with different structures is reported. Based on electrostatic assembly, Janus GO nanosheets can be easily functionalized with a template polymer or be defunctionalized by altering the ionic strength. By using this approach, Janus GO nanosheets are prepared successfully with hydrophobic polystyrene chains on one side and hydrophilic poly(2‐(dimethylamino)ethyl methacrylate) chains on the other side.

  相似文献   


2.
Hierarchical semicrystalline block copolymer nanoparticles are produced in a segmented gas‐liquid microfluidic reactor with top‐down control of multiscale structural features, including nanoparticle morphologies, sizes, and internal crystallinities. Control of multiscale structure on disparate length scales by a single control variable (flow rate) enables tailoring of drug delivery nanoparticle function including release rates.

  相似文献   


3.
Graphene oxide–bacterial cellulose (GO/BC) nanocomposite hydrogels with well‐dispersed GO in the network of BC are successfully developed using a facile one‐step in situ biosynthesis by adding GO suspension into the culture medium of BC. During the biosynthesis process, the crystallinity index of BC decreases and GO is partially reduced. The experimental results indicate that GO nanosheets are uniformly dispersed and well‐bound to the BC matrix and that the 3D porous structure of BC is sustained. This is responsible for efficient load transfer between the GO reinforcement and BC matrix. Compared with the pure BC, the tensile strength and Young's modulus of the GO/BC nanocomposite hydrogel containing 0.48 wt% GO are significantly improved by about 38 and 120%, respectively. The GO/BC nanocomposite hydrogels are promising as a new material for tissue engineering scaffolds.

  相似文献   


4.
Endowing unimolecular soft nanoobjects with biomimetic functions is attracting significant interest in the emerging field of single‐chain technology. Inspired by the compartmentalized structure and polymerase activity of metalloenzymes, copper‐containing compact nanoglobules have been designed, synthesized, and characterized endowed with metalloenzyme mimicking characteristics toward controlled synthesis of water‐soluble polymers and thermoresponsive hydrogels. When compared to metalloenzymes, artificial nanoobjects endowed with metalloenzyme mimicking characteristics offer increased stability against thermal changes and reduced degradability by hydrolytic enzymes.

  相似文献   


5.
1,5,7‐Triazabicyclo[4.4.0]dec‐5‐ene (TBD)‐catalyzed polycondensation reactions of fatty acid derived dimethyl dicarbamates and diols are introduced as a versatile, non‐isocyanate route to renewable polyurethanes. The key step for the synthesis of dimethyl carbamate monomers from plant‐oil‐derived dicarboxylic acids is based on a sustainable base‐catalyzed Lossen rearrangement. The formed polyurethanes with molecular weights up to 25 kDa are characterized by SEC, DSC, and NMR analysis.

  相似文献   


6.
Triptycene‐based micorporous polymer is functionalized with CO2‐philic tetrazole moieties via ZnCl2‐catalyzed post‐polymerization. Gas adsorption experiments indicate that it possesses high CO2 uptake capacity, reaching 134 cm3 g−1 (26.5 wt%) at 1.0 bar and 273 K, along with high selectivity towards CO2 over N2 and CH4. The porous polymeric networks present the promising potentials as efficient adsorbents in clean energy applications.

  相似文献   


7.
Low‐molecular‐weight poly(ethylene glycol) (PEG) is deliberately incorporated into synthesized swellable poly(ethylene oxide) (PEO) membranes via a facile post‐treatment strategy. The membranes exhibit both larger fractional free volume (FFV) and a higher content of CO2‐philic building units, resulting in significant increments in both CO2 permeability and CO2/H2 selectivity. The separation performance correlates nicely with the microstructure of the membranes. This study may provide useful insights in the formation and mass transport behavior of highly efficient polymeric membranes applicable to clean energy purification and CO2 capture, and possibly bridge the material‐induced technology gap between academia and industry.

  相似文献   


8.
The chemical control of cell division has attracted much attention in the areas of single cell‐based biology and high‐throughput screening platforms. A mussel‐inspired cytocompatible encapsulation method for achieving a “cell‐division control” with cross‐linked layer‐by‐layer (LbL) shells is developed. Catechol‐grafted polyethyleneimine and hyaluronic acid are chosen as polyelectrolytes for the LbL process, and the cross‐linking of polyelectrolytes is performed at pH 8.5. Cell division is controlled by the number of the LbL nanolayers and cross‐linking reaction. We also suggest a new measuring unit, , for quantifying “cell‐division timing” based on microbial growth kinetics.

  相似文献   


9.
Chiral monolithic absorbent is successfully constructed for the first time by using optically active helical‐substituted polyacetylene and graphene oxide (GO). The preparative strategy is facile and straightforward, in which chiral‐substituted acetylene monomer (Ma), cross‐linker (Mb), and alkynylated GO (Mc) undergo copolymerization to form the desired monolithic absorbent in quantitative yield. The resulting monoliths are characterized by circular dichroism, UV–vis absorption, scanning electron microscopy (SEM), FT‐IR, Raman, energy‐dispersive spectrometer (EDS), X‐ray diffraction (XRD), Brunauer–Emmett–Teller (BET), XPS, and thermogravimetric analysis (TGA) techniques. The polymer chains derived from Ma form chiral helical structures and thus provide optical activity to the monoliths, while GO sheets contribute to the formation of porous structures. The porous structure enables the monolithic absorbents to demonstrate a large swelling ratio in organic solvents, and more remarkably, the helical polymer chains provide optical activity and further enantio‐differentiating absorption ability. The present study establishes an efficient and versatile methodology for preparing novel functional materials, in particular monolithic chiral materials based on substituted polyacetylene and GO.

  相似文献   


10.
Colloidal molecules constructed from polymers and nanoparticles (NPs) have recently emerged as a novel class of building blocks for assembling functional hybrid materials. Particularly, self‐assembly of amphiphilic block copolymer (BCP)‐tethered NPs (BNPs) has shown great promise in the nanoscale design of functional hybrid materials. On the one hand, structurally the BNPs can be considered as molecular equivalents that are capable of self‐assembly at multiple hierarchical levels. On the other hand, the assembly of BNPs shows significant differences from molecular assembly due to their large dimension, complex geometry, and multi‐scale interactions involved in the assembly process. The manipulation of BCPs localized near the surface of the NPs offers an effective tool for engineering the interactions between NPs and hence the complexity of NP assembly. In this Feature Article, recent progresses on the self‐assembly of BNPs into functional materials are summarized. First, major strategies for assembling amphiphilic BNPs are highlighted. Secondly, the application of hybrid nanostructures (e.g., vesicles) assembled from BNPs in the field of biomedical imaging and delivery is discussed. Finally, current challenges and perspectives at this frontier are outlined.

  相似文献   


11.
Cyclic multiblock polymers with high‐order blocks are synthesized via the combination of single‐electron transfer living radical polymerization (SET‐LRP) and copper‐catalyzed azide‐alkyne cycloaddition (CuAAC). The linear α,ω‐telechelic multiblock copolymer is prepared via SET‐LRP by sequential addition of different monomers. The SET‐LRP approach allows well control of the block length and sequence as A‐B‐C‐D‐E, etc. The CuAAC is then performed to intramolecularly couple the azide and alkyne end groups of the linear copolymer and produce the corresponding cyclic copolymer. The block sequence and the cyclic topology of the resultant cyclic copolymer are confirmed by the characterization of 1H nuclear magnetic resonance spectroscopy, gel permeation chromatography, Fourier transform infrared spectroscopy, and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry.

  相似文献   


12.
A novel type of emulsion gel based on star‐polymer‐stabilized emulsions is highlighted, which contains discrete hydrophobic oil and hydrophilic aqueous solution domains. Well‐defined phenol‐functionalized core‐crosslinked star polymers are synthesized via reversible addition‐fragmentation chain transfer (RAFT)‐mediated dispersion polymerization and are used as stabilizers for oil‐in‐water emulsions. Horseradish‐peroxidase‐catalyzed polymerization of the phenol moieties in the presence of H2O2 enables rapid formation of crosslinked emulsion gels under mild conditions. The crosslinked emulsion gels exhibit enhanced mechanical strength, as well as widely tunable composition.

  相似文献   


13.
The synthesis of propargyl‐functional poly(carbonate)s with different content of glycidyl propargyl ether (GPE) units is achieved via the copolymerization of propargyl glycidyl ether and carbon dioxide. A new type of functional poly(carbonate) synthesized directly from CO2 and the glycidyl ether is obtained. The resulting polymers show moderate polydispersities in the range of 1.6–2.5 and molecular weights in the range of 7000–10 500 g mol−1. The synthesized copolymers with varying number of alkyne functionalities and benzyl azide are used for the copper‐catalyzed Huisgen‐1,3‐dipolar addition. Moreover, the presence of vicinal alkyne groups opens a general pathway to produce functional aliphatic poly(carbonate)s from a single polymer scaffold.

  相似文献   


14.
A triple‐sensitive polymer of poly(ethylene glycol)‐iminoboronate nitrobenzyl ethanediol chelate (PEG‐INEC) is efficiently fabricated via the convenient aqueous iminoboronate multi‐component reaction (MCR) of methoxypolyethylene glycol amine (mPEG‐NH2), 2‐formylphenylboronic acid (FPBA), and bis(2‐nitrophenyl) ethanediol (BNPE, a photo‐cleavable nitrobenzyl alcohol derivate). The aqueous MCR synthetic procedure is followed using 1H NMR and turbidity analysis. It is shown that polymer nano‐aggregates of PEG‐INEC in aqueous solution can be dissociated through the stimuli responsive reactions of the hydrophobic iminoboronate nitrobenzyl ethanediol chelates (INECs) when exposed to UV light, acid, and H2O2, respectively. Furthermore, upon the stimulation of combined triggers, the dissociation of polymer nano‐aggregates can be accelerated to different extents, resulting in the synergistic release of encapsulated hydrophobic molecules in water. The proposed facile and general method is quite desirable and of great importance in practical applications like drug and gene delivery.

  相似文献   


15.
Synthesis of a cyclodextrin (CD) polyrotaxane is achieved for the first time by simultaneous free radical polymerization of isoprene, threading by CD, and stoppering by copolymerization of styrene. This reaction is performed in an eco‐friendly manner in an aqueous medium similar to classical emulsion polymerization. Threaded CD rings of the polyrotaxane are cross‐linked by hexamethylene diisocyanate, leading to highly elastic slide‐ring gels.

  相似文献   


16.
For a singlet–triplet coupled molecular system, the efficiency of forward and reverse intersystem crossing processes can be enhanced by reducing the energy gap between the singlet and triplet excited states (ΔEST), thus prolonging the exciton lifetimes. This has been proven beneficial for many emerging applications such as molecular luminescence, optoelectronics, and photonics. Here, a strategy is proposed to create small ΔEST by polymerizing fluorescent dye molecules, the efficacy of which is justified by density functional theory calculations and ultrafast spectroscopy. Thus, singlet–triplet exciton communication through polymerization‐enhanced intersystem crossing is also proposed.

  相似文献   


17.
This paper demonstrates the development of pH and thermo‐responsive fluorescent nanoparticles, which are composed of graphene oxide (GO) with BODIPY conjugated PEG, to trigger the detection of cancer cells through imaging based on intracellular accommodation. Responsiveness to pH is studied using atomic force microscopy and apparent thickness differences are seen with changes in pH. Confocal images of the nanoparticles (NPs) exhibit remarkably bright fluorescence at lysosomal pH, while no fluorescence is observed under a physiological environment, making the NPs a novel fluorescent probe. The NPs are able to accumulate the hydrophobic anticancer drug DOX due to the hydrophobic surface of GO and show excellent drug release behavior. Therefore, the NPs developed are novel candidates for a fluorescent probe to identify cancer cells and a drug carrier for cancer therapy.

  相似文献   


18.
A facile and universal method is presented for the preparation of polymer brushes on amorphous TiO2 film. Homogeneous and stable poly(methyl methacrylate), polystyrene, poly(4‐vinylpyridine), and poly(N‐vinyl imidazole) (PNVI) brushes up to 550 nm are directly created onto TiO2 via UV‐induced photopolymerization of corresponding monomers. Kinetic studies reveal a linear increase in thickness with the polymerization time. Characterization of the resulting polymer brushes by FTIR spectroscopy, X‐ray photoelectron spectroscopy, contact angle, and atomic force microscopy (AFM) indicates an efficient UV‐grafting reaction. Finally, we have demonstrated the possibility in converting the PNVI brushes to poly(vinyl imidazolium bromide), i.e., poly(ionic liquid) brushes by polymer–analogous reactions.

  相似文献   


19.
The first polymer bearing exTTF units intended for the use in electrical charge storage is presented. The polymer undergoes a redox reaction involving two electrons at −0.20 V vs Fc/Fc+ and is applied as active cathode material in a Li‐organic battery. The received coin cells feature a theoretical capacity of 132 mAh g−1, a cell potential of 3.5 V, and a lifetime exceeding more than 250 cycles.

  相似文献   


20.
Two soluble poly(phenyltriazolylcarboxylate)s (PPTCs) with high molecular weights (M w up to 26 800) are synthesized by the metal‐free 1,3‐dipolar polycycloadditions of 4,4′‐isopropylidenediphenyl diphenylpropiolate ( 1 ) and tetraphenylethene‐containing diazides ( 2 ) in dimethylformamide at 150 °C for 12 h in high yields (up to 93%). The resultant polymers are soluble in common organic solvents and are thermally stable with 5% weight loss temperatures higher than 375 °C. The PPTCs are nonemissive in solutions, but become highly luminescent upon aggregation, showing a phenomenon of aggregation‐induced emission. Their aggregates can be used as fluorescent chemosensors for high‐sensitivity detection of explosives.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号