首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A thermally stable 2D array of spheres and their morphology control become important for the fabrication of novel nanostructures. Here, a simple method is presented for fabrication of large‐area and well‐ordered arrays of carbonized polystyrene (PS) hollow spheres with a controlled (close‐packed or non‐close‐packed hexagonal) morphology, prepared by combining the self‐assembly of PS‐grafted silica nanoparticles, etching, electron irradiation, and subsequent thermal annealing. Fine control in the 2D or 3D nanostructure of carbon materials can open up new opportunities for high‐performance nanoscale applications that require an efficient fabrication method for preparation of the porous carbon array.

  相似文献   


2.
A simple and versatile method is developed for preparing anisotropic polymer particles by pressing polymer microspheres at elevated temperatures. Polystyrene (PS) microspheres are used to demonstrate this approach. Depending on the mechanical deformation and wetting of the polymers on the substrates, polymer structures with special shapes such as barrel‐like or dumbbell‐like shapes can be prepared. The morphology of polymer structures can be controlled by the experimental parameters such as the pressing pressure, the pressing temperature, and the pressing time. The wetting of the polymers on the substrates dominates when the samples are annealing at higher temperatures for longer times.

  相似文献   


3.
Sharp dynamic thermal gradient (∇T ≈ 45 °C mm−1) field‐driven assembly of cylinder‐forming block copolymer (c‐BCP) films filled with PS‐coated gold nanoparticles (AuNPs; dNP ≈ 3.6 nm, φNP ≈ 0–0.1) is studied. The influence of increasing AuNP loading fraction on dispersion and assembly of AuNPs within c‐BCP (PS‐PMMA) films is investigated via both static and dynamic thermal gradient fields. With φNP increasing, a sharp transition from vertical to random in‐plane horizontal cylinder orientation is observed due to enrichment of AuNPs at the substrate side and favorable interaction of PMMA chains with gold cores. Furthermore, a detachable capping elastomer layer can self‐align these random oriented PMMA microdomains into unidirectional hybrid AuNP/c‐BCP nanolines, quantified with an alignment order parameter, S.

  相似文献   


4.
Porous polymer membranes made via electrostatic complexation are fabricated from a water‐soluble poly(ionic liquid) (PIL) for the first time. The porous structure is formed as a consequence of simultaneous phase separation of the PIL and ionic complexation with an acid, which occurred in a basic solution of a nonsolvent for the PIL. These membranes have a stimuli‐responsive porosity, with open and closed pores in isopropanol and in water, respectively. This property is quantitatively demonstrated in filtration experiments, where water is passing much slower through the membranes than isopropanol.

  相似文献   


5.
Ethylene–propylene–methyl methacrylate (MMA) and ethylene–hexene–MMA A‐B‐C block copolymers with high molecular weight (>100 000) are synthesized using fluorenylamide‐ligated titanium complex activated by modified methylaluminoxane and 2,6‐ditert‐butyl‐4‐methylphenol for the first time. After diblock copolymerization of olefin is conducted completely, MMA is added and activated by aluminum Lewis acid to promote anionic polymerization. The length of polyolefin and poly (methyl methacrylate) (PMMA) is controllable precisely by the change of the additive amount of olefin and polymerization time, respectively. A soft amorphous polypropylene or polyhexene segment is located between two hard segments of semicrystalline polyethylene and glassy PMMA blocks.

  相似文献   


6.
Conjugated pillar[5]arene‐diketopyrrolopyrrole copolymer ( P1 ) is synthesized by the copolymerization of a difunctionalized pillar[5]arene and a diketopyrrolopyrrole‐based monomer, which shows large extinction coefficients (1.1 × 104m –1 cm–1) at 519 nm and strong emission at 587 nm. P1 exhibits very strong host–guest binding affinity towards adiponitrile but low binding affinity towards 1,4‐dihalobutane and 1,4‐bis(imidazol‐1‐yl)butane. Such an enhanced selectivity is first found in the polypseudorotaxane between pillararene and neutral guests in organic solution and is successfully used for the recognition and adsorption of adiponitrile by the formation of a P1 ‐adiponitrile polypseudorotaxane.

  相似文献   


7.
Continuous conductive gold nanofibers are prepared via the “tubes by fiber templates” process. First, poly(l‐lactide) (PLLA)‐stabilized gold nanoparticles (AuNP) with over 60 wt% gold are synthesized and characterized, including gel permeation chromatography coupled with a diode array detector. Subsequent electrospinning of these AuNP with template PLLA results in composite nanofibers featuring a high gold content of 57 wt%. Highly homogeneous gold nanowires are obtained after chemical vapor deposition of 345 nm of poly(p‐xylylene) (PPX) onto the composite fibers followed by pyrolysis of the polymers at 1050 °C. The corresponding heat‐induced transition from continuous gold‐loaded polymer tubes to smooth gold nanofibers is studied by transmission electron microscopy and helium ion microscopy using both secondary electrons and Rutherford backscattered ions.

  相似文献   


8.
The self‐assembled nanostructures of a high‐molecular‐weight rod–coil block copolymer, poly(styrene‐block‐(2,5‐bis[4‐methoxyphenyl]oxycarbonyl)styrene) (PS‐b‐PMPCS), in p‐xylene are studied. The cylindrical micelles, long segmental cylindrical micelle associates, spherical micelles, and spherical micelle associates are observed with increased copolymer concentration. The high molecular weight of PS leads to the entanglement between PS chains from different micelles, which is the force for supramolecular interactions. Short cylindrical micelles are connected end‐to‐end via this supramolecular chemistry to form long segmental cylindrical micelle associates, analogue to the condensation polymerization process, with direction and saturation. On the other hand, spherical micelles assemble via supramolecular chemistry to form spherical micelle associates, yet without any direction due to their isotropic properties.

  相似文献   


9.
The phase behavior of block copolymer based supramolecular complexes polystyrene‐block‐poly(4‐vinylpyridine) (PS‐b‐P4VP) and amphiphilic pentadecylphenol (PDP) molecules resembles the phase behavior of conventional block copolymers. Several PS‐b‐P4VP(PDP) complexes are found to self‐assemble into gyroid nanostructures. Typically, the grains are randomly oriented with a maximal size of several micrometers. Here, the orientation of a gyroid PS‐b‐P4VP(PDP) complex upon shearing is reported. It is found that the (111) gyroid lattice direction orients parallel to the shear direction after only several seconds of large amplitude oscillatory shearing. Oriented gyroid complexes can be used as templates for the preparation of metal nanofoams with improved ordering with potentially superior properties.

  相似文献   


10.
Understanding nanoscale structural hierarchy/complexity of hydrophilic flexible polymers is imperative because it can be viewed as an analogue to protein‐alike superstructures. However, current understanding is still in infancy. Herein the first demonstration of nanoscale structural hierarchy/complexity via copper chelation–induced self‐assembly (CCISA) is presented. Hierarchically‐ordered colloidal networks and disks can be achieved by deliberate control of spacer length and solution pH. Dynamic light scattering, transmission electron microscopy, and atomic force microscopy demonstrate that CCISA underwent supramolecular‐to‐supracolloidal stepwise‐growth mechanism, and underline amazing prospects to the hierarchically‐ordered superstructures of hydrophilic flexible polymers in water.

  相似文献   


11.
The directed self‐assembly of block copolymer (BCP) materials in topographically patterned substrates (i.e., graphoepitaxy) is a potential methodology for the continued scaling of nanoelectronic device technologies. In this Communication, an unusual feature size variation in BCP nanodomains under confinement with graphoepitaxially aligned cylinder‐forming poly(styrene)‐block‐poly(4‐vinylpyridine) (PS‐b‐P4VP) BCP is reported. Graphoepitaxy of PS‐b‐P4VP BCP line patterns (CII) is accomplished via topo­graphy in hydrogen silsequioxane (HSQ) modified substrates and solvent vapor annealing (SVA). Interestingly, reduced domain sizes in features close to the HSQ guiding features are observed. The feature size reduction is evident after inclusion of alumina into the P4VP domains followed by pattern transfer to the silicon substrate. It is suggested that this nano­domain size perturbation is due to solvent swelling effects during SVA. It is proposed that using a commensurability value close to the solvent vapor annealed periodicity will alleviate this issue leading to uniform nanofins.

  相似文献   


12.
Polymers with pendant phenoxyl radicals are synthesized and the electrochemical properties are investigated in detail. The monomers are polymerized using ring‐opening metathesis polymerization (ROMP) or free‐radical polymerization methods. The monomers and polymers, respectively, are oxidized to the radical either before or after the polymerization. These phenoxyl radicals containing polymers reveal a reversible redox behavior at a potential of −0.6 V (vs Ag/AgCl). Such materials can be used as anode‐active material in organic radical batteries (ORBs).

  相似文献   


13.
Hybrid cylindrical micelles loaded with nanoparticles are fabricated via extrusion of spherical micelles in solution phase through small long cylindrical pores. Small gold nanoparticles (AuNPs) are pre‐coated with thiol‐terminated polystyrene and then further encapsulated in the core part of block copolymer spherical micelles by a precipitation method. By varying the starting mass ratio of AuNPs and the diblock copolymers polystyrene‐b‐polyisoprene (PS‐b‐PI) during the encapsulation, the AuNPs loading density along the cylindrical micelles can be controlled. The mechanism for this sphere‐to‐cylinder transition induced by extruding hybrid spherical micelles through small cylindrical nanopores is discussed. These findings provide a novel way to manufacture high‐quality and functional polymeric nano­wires, which may open the door to new applications such as in plasmonic waveguides.

  相似文献   


14.
Linear poly(4‐tert‐butoxystyrene)‐b‐poly(4‐vinylpyridine) (PtBOS‐b‐P4VP) diblock copolymers are synthesized using reversible addition–fragmentation chain transfer polymerization. The self‐assembly of four different PtBOS‐b‐P4VP diblock copolymers is studied using small‐angle X‐ray scattering and transmission electron microscopy and a number of interesting observations are made. A tBOS62b‐4VP28 diblock copolymer with a weight fraction P4VP of 0.21 shows a disordered morphology of P4VP spheres with liquid‐like short‐range order despite an estimated value of of the order of 50. Increasing the length of the 4VP block to tBOS62‐b‐4VP199 results in a diblock copolymer with a weight fraction P4VP of 0.66. It forms a remarkably well‐ordered lamellar structure. Likewise, a tBOS146b‐4VP120 diblock copolymer with a weight fraction P4VP of 0.33 forms an extremely well‐ordered hexagonal structure of P4VP cylinders. Increasing the P4VP block of this block copolymer to tBOS146b‐4VP190 with a weight fraction P4VP of 0.44 results in a bicontinuous gyroid morphology despite the estimated strong segregation of . These results are discussed in terms of the architectural dissimilarity of the two monomers, characterized by the presence of the large side group of PtBOS, and the previously reported value of the interaction parameter, , for this polymer pair.

  相似文献   


15.
Hierarchical semicrystalline block copolymer nanoparticles are produced in a segmented gas‐liquid microfluidic reactor with top‐down control of multiscale structural features, including nanoparticle morphologies, sizes, and internal crystallinities. Control of multiscale structure on disparate length scales by a single control variable (flow rate) enables tailoring of drug delivery nanoparticle function including release rates.

  相似文献   


16.
Synthesis of a cyclodextrin (CD) polyrotaxane is achieved for the first time by simultaneous free radical polymerization of isoprene, threading by CD, and stoppering by copolymerization of styrene. This reaction is performed in an eco‐friendly manner in an aqueous medium similar to classical emulsion polymerization. Threaded CD rings of the polyrotaxane are cross‐linked by hexamethylene diisocyanate, leading to highly elastic slide‐ring gels.

  相似文献   


17.
Well‐defined ABC triblock copolymers based on two hydrophilic blocks, A and C, and a hydrophobic block B are synthesized and their self‐assembly behavior is investigated. Interestingly, at the same solvent, concentration, pH, and temperature, different shape micelles are observed, spherical and worm‐like micelles, depending on the preparation method. Specifically, spherical micelles are observed with bulk rehydration while both spherical and worm‐like micelles are observed with film rehydration.

  相似文献   


18.
Binary polystyrene and poly(4‐vinylpyridine) mixed grafted silica nanoparticles (PSt/P4VP‐g‐SNPs) are fabricated using CuI‐catalyzed azide‐alkyne Huisgen cycloaddition (CuAAC) via grafting‐to method. Azide‐terminated PSt and P4VP are synthesized via post‐ and pre‐atom transfer radical polymerization modification, respectively. Then, the polymers are simultaneously anchored onto alkyne‐modified SNPs by CuAAC yielding mixed brushes as shown by Raman spectroscopy, dynamic light scattering, and thermogravimetric analysis. To the best of our knowledge, this is the first report of simultaneously grafting two distinct polymer chains to synthesize mixed grafted silica nanoparticles using CuAAC technique via grafting‐to method.

  相似文献   


19.
Cationic polyelectrolytes showing an upper critical solution temperature (UCST) are synthesized by reversible addition‐fragmentation chain transfer (RAFT) polymerization in water at a temperature well above the UCST. The polymerization is well controlled by the RAFT process, with excellent pseudo‐first‐order kinetics. The cloud point is highly dependent on the polyelectrolyte concentration, molecular weight, and presence of added electrolyte. Alkylation of a neutral polymer is also conducted to obtain polyelectrolytes with different hydrophobic groups, which are shown to increase the cloud point.

  相似文献   


20.
Cross‐linked azobenzene liquid‐crystalline polymer films with a poly(oxyethylene) backbone are synthesized by photoinitiated cationic copolymerization. Azobenzene moieties in the film surface toward the light source are simultaneously photoaligned during photopolymerization with unpolarized 436 nm light and thus form a splayed alignment in the whole film. The prepared films show reversible photoinduced bending behavior with opposite bending directions when different surfaces of one film face to ultraviolet light irradiation.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号