首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
2.
The structural determination and manipulation of bottle‐brush polymers, a class of polymers with serially grafted side‐chains, is challenging due to the interplay of side‐chain and backbone interactions over various length scales. The present work performs a detailed analysis, using molecular dynamics simulation techniques, to unravel these interactions by probing the distinct rod to a flexible real‐chain with self‐avoiding walk (SAW) type crossover in the backbone static structure factor. This analysis elucidates the deviation from flexible chain behavior, while also providing a quantitative measure of persistence length, . Significantly, the results identify a trend in which is consistent with the debated theoretical prediction of , where Ns is the number of monomers in each side‐chain of the bottle‐brush polymer.

  相似文献   


3.
Hyperbranched polymer formation during step polymerization of AB2 type monomer with equal reactivity of two B's is investigated theoretically, focusing the attention to the degree of branching (DB) and the mean square radius of gyration for the unperturbed chains, . It is found that the DB‐value at large degree of polymerization (P) limit, = 0.5 is unchanged during the whole course of polymerization. The average value of having the same P is invariant throughout the polymerization. The universal curve between and P agrees perfectly with that for the self‐condensing vinyl polymerization (SCVP), another method to synthesize hyperbranched polymers, when the reactivity ratio for SCVP, rSCVP, is 2.589 that gives = 0.5. The power law, is found for large values of P.

  相似文献   


4.
The step‐wise solution self‐assembly of double crystalline organometallic poly(ferrocenyldimethylsilane)‐block‐poly(2‐iso‐propyl‐2‐oxazoline) (PFDMS‐b‐PiPrOx) diblock copolymers is demonstrated. Two block copolymers are obtained by copper‐catalyzed azide‐alkyne cycloaddition (CuAAC), featuring PFDMS/PiPrOx weight fractions of 46/54 (PFDMS30b‐PiPrOx75) and 30/70 (PFDMS30b‐PiPrOx155). Nonsolvent induced crystallization of PFDMS in acetone leads in both cases to cylindrical micelles with a PFDMS core. Afterward, the structures are transferred into water for sequential temperature‐induced crystallization of the PiPrOx corona, leading to hierarchical double crystalline superstructures, which are investigated using scanning electron microscopy, wide angle X‐ray scattering, and differential scanning calorimetry.

  相似文献   


5.
A unique fabrication process of low molar mass, crystalline polypeptoid fibers is described. Thermoresponsive fiber mats are prepared by electrospinning a homogeneous blend of semicrystalline poly(N‐(n‐propyl) glycine) (PPGly; 4.1 kDa) with high molar mass poly(ethylene oxide) (PEO). Annealing of these fibers at ≈100 °C selectively removes the PEO and produces stable crystalline fiber mats of pure PPGly, which are insoluble in aqueous solution but can be redissolved in methanol or ethanol. The formation of water‐stable polypeptoid fiber mats is an important step toward their utilization in biomedical applications such as tissue engineering or wound dressing.

  相似文献   


6.
In order to control the branching behavior of polymers, the comparison of experimental and simulated data is important. The utilization of a nonlattice, self‐avoiding necklace‐bead random walk simulator is reported, which allows for the calculation of radii of gyration r g of polymer molecules with branched structures. The focus is on sensitivity toward short‐chain branches, long‐chain branches (LCBs), and the copolymer composition. Using only two parameters—the size of monomer beads and the minimum angle between three subsequent beads—a fast and reliable parameter fit procedure based on experimental data is described. The procedure is exemplarily shown for copolymers of vinylidene fluoride and hexafluoropropene (HFP) with HFP contents in the copolymer of at most 0.3 and is easily transferable to other polymers that may be analyzed by size‐exclusion chromatography/multiangle laser light scattering close to θ conditions. Applying the Zimm–Stockmayer equation to simulated r g data allows for comparing the “effective” number of LCBs with the number of LCBs given by kinetic simulations. A tool for better estimation of rate coefficients associated with the formation of short‐ and long‐chain branches is provided.

  相似文献   


7.
Chirality is one of the most fascinating and ubiquitous features in nature, especially in biological systems. The effects of chiral surfaces, especially in combination with degradable materials of good biocompatibility, on stem cell behaviors has not yet been tackled. In this communication, the chiral monomers N‐acryloyl‐l (d )‐valine (l (d )‐AV) are synthesized and are polymerized to obtain chiral (l (d )‐PAV‐SH) oligomers, which are covalently immobilized onto electron‐deficient poly(propylene fumarate) polyurethane (PPFU) via Michael addition. The PPFU‐l ‐PAV can interact more strongly and actively with bone marrow stem cells (BMSCs) than PPFU‐d ‐PAV, leading to a larger cell spreading area, faster migration velocity, and stronger osteodifferentiation tendency.

  相似文献   


8.
An advanced Monte Carlo (MC) method is developed, using weight‐based selection of polymer chains, to predict the molecular weight distribution (MWD) and branching level for arborescent polyisobutylene (arbPIB) at the end of a batch reaction. This new weight‐based MC method uses differential equations and random numbers to determine the detailed structure of arbPIB molecules. Results agree with those from an advanced number‐based MC method. The proposed weight‐based algorithm requires approximately twice the computation time of the number‐based method, but produces more accurate results in the high‐molecular‐weight portion of the MWD when the same number of polymer chains is assembled.

  相似文献   


9.
Pillararene‐containing thermoresponsive polymers are synthesized via reversible addition–fragmentation chain transfer polymerization using pillararene derivatives as the effective chain transfer agents for the first time. These polymers can self‐assemble into micelles and form vesicles after guest molecules are added. Furthermore, such functional polymers can be further applied to prepare hybrid gold nanoparticles, which integrate the thermoresponsivity of polymers and molecular recognition of pillararenes.

  相似文献   


10.
This study presents a molecular model for the amplitude‐dependent dynamic moduli of polymer melts reinforced with nanoparticles. This study shows that intense strain‐thinning reported in experimental studies of polymer nanocomposites can be attributed to disentanglement of bulk polymer chains from those strongly adsorbed to the surface of nanoparticles. This flow‐induced relaxation is what is frequently termed as convective constraint release and is similar to the cohesive slip of polymer melt at solid interfaces.

  相似文献   


11.
Hyperbranched polymers formed through step polymerization of AB2‐type monomer with equal reactivity for both B groups in a continuous flow stirred‐tank reactor (CSTR) are investigated theoretically. The weight fraction distribution at high molecular weight tail follows a power law, W (P ) ∝ P −1/ξ for ξ ≤ 0.5 with , where is the mean residence time. The degree of branching (DB) at the large degree of polymerization (P ) limit is DB P →∞ = 0.6 irrespective of the ξ‐value, which is larger than the case for the corresponding batch polymerization that gives DB P →∞ = 0.5. The relationship between the radius of gyration 〈s 20 and P shows that the hyperbranched polymers formed in a CSTR are very compact, and the 〈s 20‐values for large polymers are even smaller than the smallest possible case for a batch reactor with DB P →∞ = 1. For large polymers, the power law 〈s 20P 1/3 holds, which is 〈s 20P 1/2 for batch polymerization.

  相似文献   


12.
A novel PEGylation polypeptide, poly(ethylene glycol)‐b‐poly(l ‐lysine)‐b‐poly(l ‐cysteine) (PEG‐PLL‐PCys) triblock copolymer is synthesized via the sequential ring‐opening polymerization of amino acid N‐carboxyanhydrides initiated by methoxypolyethylene glycol amine (mPEG‐NH2, M w is 2 kDa). Subsequently, the obtained polypeptide is partially conjugated with fluorocarbon chains via disulfide exchange reaction. PLL segment can condense plasmid DNA through an electrostatic force to form a complex core, PEG segment surrounding the complex like a corona can prevent the complex from precipitation and reduce the adsorption of serum, while PCys segment with fluorocarbon can enhance the cellular uptake and the stability of the formed polyplex micelles in physiological conditions. Experiment results exhibit that the fluorinated polypeptides have low cytotoxicity and good gene transfection efficiency even in the presence of 50% fetal bovine serum.

  相似文献   


13.
Exploiting the tremendous potential of the recently discovered reversible bidirectional shape‐memory effect (rbSME) for biomedical applications requires switching temperatures in the physiological range. The recent strategy is based on the reduction of the melting temperature range (ΔT m) of the actuating oligo(ε‐caprolactone) (OCL) domains in copolymer networks from OCL and n‐butyl acrylate (BA), where the reversible effect can be adjusted to the human body temperature. In addition, it is investigated whether an rbSME in the temperature range close or even above Tm,offset (end of the melting transition) can be obtained. Two series of networks having mixtures of OCLs reveal broad ΔTms from 2 °C to 50 °C and from −10 °C to 37 °C, respectively. In cyclic, thermomechanical experiments the rbSME can be tailored to display pronounced actuation in a temperature interval between 20 °C and 37 °C. In this way, the application spectrum of the rbSME can be extended to biomedical applications.

  相似文献   


14.
New macromolecules such as dendrimers are increasingly needed to drive breakthroughs in diverse areas, for example, healthcare. Here, the authors report hybrid antimicrobial dendrimers synthesized by functionalizing organometallic dendrimers with quaternary ammonium groups or 2‐mercaptobenzothiazole. The functionalization tunes the glass transition temperature and antimicrobial activities of the dendrimers. Electron paramagnetic resonance spectroscopy reveals that the dendrimers form free radicals, which have significant implications for catalysis and biology. In vitro antimicrobial assays indicate that the dendrimers are potent antimicrobial agents with activity against multidrug‐resistant pathogens such as methicillin‐resistant Staphylococcus aureus and vancomycin‐resistant Enterococcus faecium as well as other microorganisms. The functionalization increases the activity, especially in the quaternary ammonium group‐functionalized dendrimers. Importantly, the activities are selective because human epidermal keratinocytes cells and BJ fibroblast cells exposed to the dendrimers are viable after 24 h.

  相似文献   


15.
The synthesis of poly(ionic liquid) (PIL) nanoparticles grafted with a poly(N‐isopropyl acrylamide) (PNIPAM) brush shell is reported, which shows responsiveness to temperature and ionic strength in an aqueous solution. The PIL nanoparticles are first prepared via aqueous dispersion polymerization of a vinyl imidazolium‐based ionic liquid monomer, which is purposely designed to bear a distal atom transfer radical polymerization (ATRP) initiating group attached to the long alkyl chain via esterification reaction. The size of the PIL nanoparticles can be readily tuned from 25 to 120 nm by polymerization at different monomer concentrations. PNIPAM brushes are successfully grafted from the surface of the poly(ionic liquid) nanoparticles via ATRP. The stimuli‐responsive behavior of the poly(ionic liquid) nanoparticles grafted with PNIPAM brushes (NP‐g‐PNIPAM) in aqueous phase is studied in detail. Enhanced colloidal stability of the NP‐g‐PNIPAM brush particles at high ionic strength compared to pure PIL nanoparticles at room temperature is achieved. Above the lower critical solution temperature (LCST) of PNIPAM, the brush particles remain stable, but a decrease in hydrodynamic radius due to the collapse of the PNIPAM brush onto the PIL nanoparticle surface is observed.

  相似文献   


16.
Thermophysical and mechanical properties of two conjugated polymers, poly(p‐phenylene vinylene) (PPV) and polyacetylene (PA), are predicted using molecular dynamics simulations and compared with results obtained from differential scanning calorimetry, nanoindentation, and dynamic mechanical analysis experiments. Glass transition temperature (Tg) is calculated from the changes in the slopes of the specific volume versus temperature and cohesive energy density versus temperature plots, obtained from constant pressure and constant temperature simulations (NPT ensemble). The effects of temperature on the torsion angle distributions and characteristic ratio are analyzed. PPV is found to have a Tg of 416 ± 8 K. PA does not exhibit a glass transition in the temperature range of 120 to 500 K. Using the static deformation method, the values of Young's modulus are calculated to be 1.81 ± 0.34 GPa for PA and 9.20 ± 0.57 GPa for PPV at 298 K. These values are in good agreement with the experimental measurements, validating the suitability of these techniques in the prediction of the polymer properties.

  相似文献   


17.
In situ Pd‐catalyzed cyclopentene polymerization in the presence of multi‐walled carbon nanotubes (MWCNTs) is demonstrated to effectively render, on a large scale, polycyclopentene‐crystal‐decorated MWCNTs. Controlling the catalyst loading and/or time in the polymerization offers a convenient tuning of the polymer content and the morphology of the decorated MWCNTs. Appealingly, films made of the decorated carbon nanotubes through simple vacuum filtration show the characteristic lotus‐leaf‐like superhydrophobicity with high water contact angle (>150°), low contact angle hysteresis (<10°), and low water adhesion, while being electrically conductive. This is the first demonstration of the direct fabrication of lotus‐leaf‐like superhydrophobic films with solution‐grown polymer‐crystal‐decorated carbon nanotubes.

  相似文献   


18.
Smart hydrogels play an increasingly important role in biomedical applications, since materials that are both biocompatible and multi‐stimuli‐responsive are highly desirable. A simple, organic solvent‐free method is presented to synthesize a biocompatible hydrogel that undergoes a sol–gel transition in response to multiple stimuli. Methoxy‐poly(ethylene glycol) (mPEG) is modified into carboxylic‐acid‐terminated‐methoxy‐poly(ethylene glycol) (mPEG‐acid), which is then grafted onto chitosan via amide linkages yielding mPEG‐g‐chitosan. Grafting of mPEG onto hydrophobic chitosan imparts hydrophilic properties to the resultant polymer. The mPEG‐g‐chitosan gel exhibits a controllable multi‐stimuli‐responsive property. The balance between hydrophilicity and hydrophobicity is believed to confer mPEG‐g‐chitosan with stimuli‐responsive behavior. The effect of salt concentration, solute concentration, temperature, and pH on the sol–gel transition of mPEG‐g‐chitosan is evaluated and the underlying mechanisms of mPEG‐g‐chitosan polymer packing and gelation property is discussed.

  相似文献   


19.
This study concerns the equilibrium geometric properties of a family of cyclic chains, referred to as the “bridged polycyclic rings,” which have f flexible subchains bridging two common branch points. By increasing the number of bridges, f, this family encompasses the usual linear chain (f = 1), monocyclic ring (f = 2), bicyclic θ‐shaped polymer (f = 3), and multicyclic rings with increasing topological complexity. Results of their radius of gyration, mean span, and, consequently, geometric shrinking factors (also known as the g‐factors) are obtained by three approaches—the Gaussian chain theory, simulations based on the Kremer–Grest bead‐spring model, and a Flory‐type mean‐field approach. Using the confinement analysis from bulk structures method, the equilibrium partition coefficients (K) of several of those cyclic excluded volume chains in a cylindrical pore with inert surfaces are obtained, and the results fall onto a common curve on a graph of K versus the polymer‐to‐pore size ratio, using the mean span as the representative polymer size, in the range of K relevant to polymer separation in size exclusion chromatography (SEC) experiments. Applications of the results in predicting the SEC retention volume of such bridged polycyclic ring polymers are discussed in the framework of the equilibrium partition theory.

  相似文献   


20.
Living ethylene/1‐olefin copolymerization with multiple comonomer feeding stages allows the production of living block copolymers (LBCs) with well‐controlled microstructures. A dynamic Monte Carlo model is developed to simulate the production of LBCs in a semibatch reactor, and it is used to study how the polymer microstructure evolves during the polymerization. The model also describes how chain transfer reactions affect the microstructure of LBC blocks. These model predictions provide useful guidelines for producing LBCs with precisely designed microstructures.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号