首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
This article presents a novel III‐V on silicon laser. This work exploits the phenomenon that a passive silicon cavity, side‐coupled to a III‐V waveguide, will provide high and narrow‐band reflectivity into the III‐V waveguide: the resonant mirror. This results in an electrically pumped laser with a threshold current of 4 mA and a side‐mode suppression ratio up to 48 dB.

  相似文献   


2.
The progress on multi‐wavelength quantum cascade laser arrays in the mid‐infrared is reviewed, which are a powerful, robust and versatile source for next‐generation spectroscopy and stand‐off detection systems. Various approaches for the array elements are discussed, from conventional distributed‐feedback lasers over master‐oscillator power‐amplifier devices to tapered oscillators, and the performances of the different array types are compared. The challenges associated with reliably achieving single‐mode operation at deterministic wavelengths for each laser element in combination with a uniform distribution of high output power across the array are discussed. An overview of the range of applications benefiting from the quantum cascade laser approach is given. The distinct and crucial advantages of arrays over external cavity quantum cascade lasers as tunable single‐mode sources in the mid‐infrared are discussed. Spectroscopy and hyperspectral imaging demonstrations by quantum cascade laser arrays are reviewed.

  相似文献   


3.
Nanophotonic beamsplitters are fundamental building blocks in integrated optics, with applications ranging from high speed telecom receivers to biological sensors and quantum splitters. While high‐performance multiport beamsplitters have been demonstrated in several material platforms using multimode interference couplers, their operation bandwidth remains fundamentally limited. Here, we leverage the inherent anisotropy and dispersion of a sub‐wavelength structured photonic metamaterial to demonstrate ultra‐broadband integrated beamsplitting. Our device, which is three times more compact than its conventional counterpart, can achieve high‐performance operation over an unprecedented 500 nm design bandwidth exceeding all optical communication bands combined, and making it one of the most broadband silicon photonics components reported to date. Our demonstration paves the way toward nanophotonic waveguide components with ultra‐broadband operation for next generation integrated photonic systems.

  相似文献   


4.
The design of micro‐optical resonator arrays are introduced and tailored towards refractive index sensing applications, building on the previously unexplored benefits of open dielectric stacks. The resonant coupling of identical hollow cavities present strong and narrow spectral resonance bands beyond that available with a single Fabry Perot interferometer. Femtosecond laser irradiation with selective chemical etching is applied to precisely fabricate stacked and waveguide‐coupled open resonators into fused silica, taking advantage of small 12 nm rms surface roughness made available by the self‐alignment of nanograting planes. Refractive index sensing of methanol‐water solutions confirm a very attractive sensing resolution of 6.5 × 10−5 RIU. Such high finesse optical elements open a new realm of optofluidic sensing and integrated optical circuit concepts for detecting minute changes in sample properties against a control solution that may find importance in chemical and biological sensors, telecom sensing networks, biomedical probes, and low‐cost health care products.

  相似文献   


5.
The recent progress in integrated quantum optics has set the stage for the development of an integrated platform for quantum information processing with photons, with potential applications in quantum simulation. Among the different material platforms being investigated, direct‐bandgap semiconductors and particularly gallium arsenide (GaAs) offer the widest range of functionalities, including single‐ and entangled‐photon generation by radiative recombination, low‐loss routing, electro‐optic modulation and single‐photon detection. This paper reviews the recent progress in the development of the key building blocks for GaAs quantum photonics and the perspectives for their full integration in a fully‐functional and densely integrated quantum photonic circuit.

  相似文献   


6.
Here we report on the hybrid nanostructures where a single ZnS nanobelt was half‐covered with an aluminum (Al) film, which is an ideal platform for studying the second‐harmonic generation (SHG) enhancement effects of the Al coating. It was fabricated by the lift‐off process and allowed for the accurate comparison of the SHG intensity between the Al‐covered and the same bare ZnS nanobelt under consistent test conditions. The results indicate that the Al coating in the hybrid nanostructures not only confines the pumping laser in the ZnS effectively, but also concentrates the emitted SHG signal greatly, increasing the signal collection efficiency. By the combination of these two effects, ∼60 times enhancement of the SHG intensity is achieved at the optimized geometry size (width and thickness) of the ZnS nanobelts. The Al‐based hybrid nanostructures open up new possibilities for low‐cost, highly efficient and directional coherent nanolight sources at short wavelengths.

  相似文献   


7.
In recent years, unconventional metamaterial properties have triggered a revolution of electromagnetic research which has unveiled novel scenarios of wave‐matter interaction. A very small dielectric permittivity is a leading example of such unusual features, since it produces an exotic static‐like regime where the electromagnetic field is spatially slowly‐varying over a physically large region. The so‐called epsilon‐near‐zero metamaterials thus offer an ideal platform where to manipulate the inner details of the “stretched” field. Here we theoretically prove that a standard nonlinearity is able to operate such a manipulation to the point that even a thin slab produces a dramatic nonlinear pulse transformation, if the dielectric permittivity is very small within the field bandwidth. The predicted non‐resonant releasing of full nonlinear coupling produced by the epsilon‐near‐zero condition does not resort to any field enhancement mechanism and opens novel routes to exploiting matter nonlinearity for steering the radiation by means of ultra‐compact structures.

  相似文献   


8.
We report complete spatial shaping (both phase and amplitude) of the second‐harmonic beam generated in a nonlinear photonic crystal. Using a collinear second‐order process in a nonlinear computer generated hologram imprinted on the crystal, the desired beam is generated on‐axis and in the near field. This enables compact and efficient one‐dimensional beam shaping in comparison to previously demonstrated off‐axis Fourier holograms. We experimentally demonstrate the second‐harmonic generation of high‐order Hermite–Gauss, top hats and arbitrary skyline‐shaped beams.

  相似文献   


9.
We experimentally demonstrate an optically‐pumped III‐V/Si vertical‐cavity laser with lateral emission into a silicon waveguide. This on‐chip hybrid laser comprises a distributed Bragg reflector, a III‐V active layer, and a high‐contrast grating reflector, which simultaneously funnels light into the waveguide integrated with the laser. This laser has the advantages of long‐wavelength vertical‐cavity surface‐emitting lasers, such as low threshold and high side‐mode suppression ratio, while allowing integration with silicon photonic circuits, and is fabricated using CMOS compatible processes. It has the potential for ultrahigh‐speed operation beyond 100 Gbit/s and features a novel mechanism for transverse mode control.

  相似文献   


10.
11.
Monocrystalline titanium dioxide (TiO2) micro‐spheres support two orthogonal magnetic dipole modes at terahertz (THz) frequencies due to strong dielectric anisotropy. For the first time, we experimentally detected the splitting of the first Mie mode in spheres of radii m through near‐field time‐domain THz spectroscopy. By fitting the Fano lineshape model to the experimentally obtained spectra of the electric field detected by the sub‐wavelength aperture probe, we found that the magnetic dipole resonances in TiO2 spheres have narrow linewidths of only tens of gigahertz. Anisotropic TiO2 micro‐resonators can be used to enhance the interplay of magnetic and electric dipole resonances in the emerging THz all‐dielectric metamaterial technology.

  相似文献   


12.
We demonstrate a scheme incorporating dual‐coupled microresonators through which mode interactions are intentionally introduced and controlled for Kerr frequency comb (microcomb) generation in the normal‐dispersion region. Microcomb generation, repetition rate selection, and mode locking are achieved with coupled silicon nitride microrings controlled via an on‐chip microheater. The proposed scheme shows for the first time a reliable design strategy for normal‐dispersion microcombs and may make it possible to generate microcombs in an extended wavelength range (e.g. in the visible) where normal material dispersion is likely to dominate.

  相似文献   


13.
A mid‐infrared (MIR) supercontinuum (SC) has been demonstrated in a low‐loss telluride glass fiber. The double‐cladding fiber, fabricated using a novel extrusion method, exhibits excellent transmission at 8–14 μm: < 10 dB/m in the range of 8–13.5 μm and 6 dB/m at 11 μm. Launched intense ultrashort pulsed with a central wavelength of 7 μm, the step‐index fiber generates a MIR SC spanning from ∼2.0 μm to 16 μm, for a 40‐dB spectral flatness. This is a fresh experimental demonstration to reveal that telluride glass fiber can emit across the all MIR molecular fingerprint region, which is of key importance for applications such as diagnostics, gas sensing, and greenhouse CO2 detection.

  相似文献   


14.
The broadband enhancement of single‑photon emission from nitrogen‐vacancy centers in nanodiamonds coupled to a planar multilayer metamaterial with hyperbolic dispersion is studied experimentally. The metamaterial is fabricated as an epitaxial metal/dielectric superlattice consisting of CMOS‐compatible ceramics: titanium nitride (TiN) and aluminum scandium nitride (AlxSc1‐xN). It is demonstrated that employing the metamaterial results in significant enhancement of collected single‑photon emission and reduction of the excited‐state lifetime. Our results could have an impact on future CMOS‐compatible integrated quantum sources.

  相似文献   


15.
Since the surface plasmon polariton (SPP) has received a great deal of attention because of its capability of guiding light within the subwavelength scale, finding methods for arbitrary SPP field generation has been a significant issue in the area of integrated optics. To achieve such a goal, it will be necessary to generate a plasmonic complex field. In this paper, we propose a novel method for generating a plasmonic complex field propagating with arbitrary curvatures by using double‐lined distributed nanoslits. As a unit cell, two facing nanoslits are used for tuning both the amplitude and the phase of excited SPPs as a function of their tilted angles. For verification of the proposed design rule, the authors experimentally demonstrate some plasmonic caustic curves and Airy plasmons.

  相似文献   


16.
A compact 64‐channel hybrid demultiplexer based on silicon‐on‐insulator nanowires is proposed and demonstrated experimentally to enable wavelength‐division‐multiplexing and mode‐division‐multiplexing simultaneously in order to realize an ultra‐large capacity on‐chip optical‐interconnect link. The present hybrid demultiplexer consists of a 4‐channel mode multiplexer constructed with cascaded asymmetrical directional‐couplers and two bi‐directional 17 × 17 arrayed‐waveguide gratings (AWGs) with 16 channels. Here each bi‐directional AWG is equivalent as two identical 1 × 16 AWGs. The measured excess loss and the crosstalk for the monolithically integrated 64‐channel hybrid demultiplexer are about ‐5 dB and ‐14 dB, respectively. Better performance can be achieved by minimizing the imperfections (particularly in AWGs) during the fabrication processes.

  相似文献   


17.
Inspired from butterfly wings that exhibit unique dewetting properties and brilliant structural color synchronously, we reported here the preparation of biomimetic few‐layer graphene films through a template‐directed chemical vapor deposition method using laser‐structured Cu foil as substrates. Hierarchical micronanostructures, including microscale stripes derived from the laser scanning and nanoscale laser‐induced periodic surface structures (LIPSS), formed on Cu foil after a simple femtosecond laser treatment. By tuning the laser power, the surface roughness of the resultant Cu foils can be well controlled. Using the laser structures Cu foil as templates, biomimetic few‐layer graphene films with both iridescence and superhydrophobicity have been successfully prepared. The present work may open up a new way to design and prepare structured graphene film in a biomimetic manner, and we deem that the bioinspired few‐layer graphene films may find broad applications in the near future.

  相似文献   


18.
A scheme for active temporal‐to‐spatial demultiplexing of single photons generated by a solid‐state source is introduced. The scheme scales quasi‐polynomially with photon number, providing a viable technological path for routing n photons in the one temporal stream from a single emitter to n different spatial modes. Active demultiplexing is demonstrated using a state‐of‐the‐art photon source—a quantum‐dot deterministically coupled to a micropillar cavity—and a custom‐built demultiplexer—a network of electro‐optically reconfigurable waveguides monolithically integrated in a lithium niobate chip. The measured demultiplexer performance can enable a six‐photon rate three orders of magnitude higher than the equivalent heralded SPDC source, providing a platform for intermediate quantum computation protocols.

  相似文献   


19.
The terahertz (THz) radiation from InGaN/GaN dot‐in‐a‐wire nanostructures has been investigated. A submicrowatt THz signal is generated with just ten vertically stacked InGaN quantum dots (QDs) in each GaN nanowire. Based on the experimental results and analysis, a single quantum wire is expected to generate an output power as high as 10 pW, corresponding to 1 pW per dot. These structures are among the most efficient three‐dimensional quantum‐confined nanostructures for the THz emission. By applying a reverse bias along the wires in a light‐emitting device (LED) consisting of such nanostructures, the THz output power is increased more than fourfold. Based on THz and photoluminescence (PL) experiments, the mechanism for the THz emission is attributed to dipole radiation induced by internal electric fields and enhanced by external fields.

  相似文献   


20.
Nondiffractive ultrafast optical beams with quasi‐stationary characteristics enable new regimes and scales in light‐matter interactions. We discuss the action of ultrashort Bessel laser beams in bulk fused silica, emphasizing excitation dynamics with energy localization beyond diffraction limit. We shed light on relaxation channels leading to one‐dimensional structures with nanoscale sections and morphologies ranging from densified matter to nanosized cavities. Space‐ and time‐resolved absorption and phase‐contrast microscopy reveals two main carrier relaxation paths. Fast exciton trapping in self‐induced matrix deformations results in positive index contrast driven by swift accumulation of non‐bridging oxygen hole centers and defect‐driven structural rearrangements. High excitation densities determine thermomechanical paths, with onset of phase transitions and the release of pressure waves. High‐aspect‐ratio nanosized channels are thus created via rarefaction and liquid cavitation, accompanied by molecular decomposition and generation of oxygen deficiency. The characteristic electronic relaxation identifies the nature of structural transitions up to the onset of phase transformation. Temporal pulse dispersion regulation allows driving unique carrier dynamics with precise control over energy deposition down to the 100 nm scale. Extreme high‐aspect‐ratio uniform void structures can thus be fabricated in conditions of sub‐micron transverse light confinement.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号