首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The decay path of an Ag8(O2)- cluster photoexcited by a 3.1 eV photon is elucidated using time-resolved photoelectron spectroscopy. Photoabsorption results in the formation of an excited state giving rise to a peak in the photoelectron spectra with well-resolved vibrational finestructure. With a lifetime of about 100 fs this bound state decays into an anti-bonding state which dissociates into O2 and Ag8- on a timescale of 10 ps. In the photoelectron spectra, this corresponds to a broad maximum shifting gradually towards higher binding energy while the O2 and Ag8- separate. Finally, the spectrum of bare Ag8- appears. This process is unique to small clusters, because on metal surfaces excited state lifetimes are too short to allow for direct dissociation.  相似文献   

2.
Various dissociation channels of silver bromide cluster ion Ag2Br+ and silver cluster ion Ag3 + were observed in high-energy collisionally-activated dissociation (CAD) using a Cs target. The fragment patterns of the high-energy CAD were compared with those of the metastable dissociation and low-energy CAD. The difference in the fragment patterns between the high-energy CAD and the other dissociation methods was explained in terms of the internal energy distributions. The dissociation mechanisms of neutral silver bromide cluster Ag2Br and silver cluster Ag3 were also investigated by charge inversion mass spectrometry using the Cs target. While the fragment ions AgBr- and Ag2 - were dominantly observed in the charge inversion spectrum of Ag2Br+, the undissociated ion Ag3 - was observed as a predominant peak in the case of Ag3 +. The dissociation behavior of Ag2Br* can be explained on the basis of the calculated thermochemical data. Contrary to this, the predominant existence of the undissociated Ag3 - cannot be explained by the reported thermochemical data. The existence of undissociated Ag3 - suggests that the dissociation barrier is higher than the internal energy of Ag3 * (theoretical: 1.03 eV, experimental: 2.31 eV) estimated from the ionization potentials of Ag3 and Cs.  相似文献   

3.
The processes involved in the excited-state relaxation of hole O 1 0 centers at nonbridging oxygen atoms in glassy SiO2 were studied using luminescence, optical absorption, and photoelectron emission spectroscopy. An additional nonradiative relaxation channel, in addition to the intracenter quenching of the 1.9-eV luminescence band, was established to become operative at temperatures above 370 K. This effect manifests itself in experiments as a negative deviation of the temperature-dependent luminescence intensity from the well-known Mott law and is identified as thermally activated external quenching with an energy barrier of 0.46 eV. Nonradiative transitions initiate, within the external quenching temperature interval, the migration of excitation energy, followed by the creation of free electrons. In the final stages, this relaxation process becomes manifest in the form of spectral sensitization of electron photoemission, which is excited in the hole O 1 0 -center absorption band.  相似文献   

4.
Ion-molecular interactions in aqueous solutions of NaOH (0–47.8%) and KOH (0–51.95%) are studied by multiple frustrated total internal reflection IR spectroscopy. Interpretation of the spectra and analysis of the spectral data are performed based on the results of DFT calculations (B3LYP/6-31++G(d, p)) of the characteristics of the free and double hydrated H3O 2 - ion. It is established that the changes in the IR spectra of NaOH and KOH aqueous solutions caused by increasing alkali concentration are due to the formation of H3O 2 - ions with a strong quasi-symmetrical hydrogen bond and their subsequent hydration by one or two water molecules. The influence of the cation nature on the degree of hydration of H3O 2 - ions is demonstrated. The equilibrium concentrations of monohydrate (H3O 2 - ? H2O) and dihydrate (H3O 2 - ? 2H2O) are calculated and their IR continuous absorption spectra are isolated.  相似文献   

5.
Low-temperature (T = 7 K) time-resolved selectively photoexcited luminescence spectra (2–6 eV) and luminescence excitation spectra (8–35 eV) of wide-bandgap chrysoberyl BeAl2O4, phenacite Be2SiO4, and beryl Be3Al2Si6O18 crystals have been studied using time-resolved VUV spectroscopy. Both the intrinsic luminescence of the crystals and the luminescence associated with structural defects were assigned. Energy transfer to impurity luminescence centers in alexandrite and emerald was investigated. Luminescence characteristics of stable crystal lattice defects were probed by 3.6-MeV accelerated helium ion beams.  相似文献   

6.
Excitation of H+, H2 +, H3 +, He+, and Ar+ ions by impact on graphite and Al2O3 was investigated by means of emission spectroscopy in the 50–1000 eV energy range of the projectiles. Emission of Balmer series from excited neutral hydrogen is observed for both targets. In addition, for the Al2O3 target a continuum emission is observed. The continuum probably originates from excited MnOm molecules produced in the collision cascade, when surface atoms bound by ionic bonds are released after the bond breaking caused by neutralization. The spectra obtained under Ar+ -bombardment show Ar II lines emitted by backscattered ions.  相似文献   

7.
Resonant Auger spectra of O2 clusters excited at the O1s edge are reported. After excitation to the repulsive 1s-1* state, the resulting resonant Auger spectrum displays features that remain constant in kinetic energy as the photon energy is detuned. The shift between known atomic fragment features and these features is consistent with that observed for atoms and clusters in singly charged states in direct photoemission. These findings are strong evidence for the existence of molecular ultrafast dissociation processes within the clusters or on their surface.  相似文献   

8.
Spectral and kinetic characteristics of the luminescence and luminescence excitation spectra of polycrystalline SrB4O7:Pr (1%) and SrB6O10:Pr (1%) samples are studied at 150–170 K. The samples show an intense luminescence band in the vicinity of 405 nm (1 S 01 I 6 transitions of Pr3+) and shorter wavelength bands also assigned to transitions from the 1 S 0 level. The main luminescence decay constant is ~2×10?7 s. The excitation spectra of the 1 S 0 luminescence in these crystals are significantly different. The SrB4O7:Pr crystal shows three well-resolved bands at 6.14, 6.55, and 6.91 eV in the region of the 4f 2→4f 15d transitions and a complex structure in the region of interband transitions (7.1–20 eV), whereas the SrB6O10:Pr crystal shows a weakly structured band at 6.31 eV and no excitation in the region of the interband transitions. The physical mechanisms that may be responsible for the observed features of the spectra are discussed.  相似文献   

9.
A miniature tunable TEA CO2 laser using isotope 13C16O2 as the active medium is developed to extend the spectral range of CO2 lasers for further application. The optimization of the energy parameters of the tunable TEA 13C16O2 laser and the same laser using 12C16O2 are studied. When a gas mixture (13C16O2: N2: He = 1: 1: 3) at a total pressure of 6.4 × 104 Pa is used, the TEA 13C16O2 laser of a 45-cm3 active volume obtains 51 emission lines in the [0001–1000] and [0001–0200] bands. The maximum pulse energy of the TEA 13C16O2 laser is about 357 mJ. The same laser using the conventional gas mixture (12C16O2: N2: He = 1: 1: 3) at a pressure of 6.66 × 104 Pa is measured to obtain 69 laser emission lines and the maximum pulse energy of laser radiation is about 409 mJ.  相似文献   

10.
A time-resolved cathodo-and photoluminescence study of nanostructural modifications of Al2O3 (powders and ceramics) excited by heavy-current electron beams, as well as by pulsed synchrotron radiation, is reported. It was found that Al2O3 nanopowders probed before and after Fe+ ion irradiation have the same phase composition (the γ-phase/δ-phase ratio is equal to 1), an average grain size equal to ~17 nm, and practically the same set of broad cathodoluminescence (CL) bands peaking at 2.4, 3.2, and 3.8 eV. It was established that Al2O3 nanopowders exhibit fast photoluminescence (PL) (a band at 3.2 eV), whose decay kinetics is described by two exponential stages (τ1 = 0.5 ns, τ2 = 5.5 ns). Three bands, at 5.24, 6.13, and 7.44 eV, were isolated in the excitation spectrum of the fast PL. Two alternate models of PL centers were considered, according to which the 3.2-eV luminescence either originates from radiative relaxation of the P? centers (anion-cation vacancy pairs) or is due to the formation of surface analogs of the F+ center (F S + -type centers). In addition to the fast luminescence, nano-Al2O3 was found to produce slow luminescence in the form of a broad band peaking at 3.5 eV. The excitation spectrum of the 3.5-eV luminescence obtained at T = 13 K exhibits two doublet bands with maxima at 7.8 and 8.3 eV. An analysis of the luminescent properties of nanostructural and single-crystal Al2O3 suggests that the slow luminescence of nanopowders at 3.5 eV is due to radiative annihilation of excitons localized near structural defects.  相似文献   

11.
V. M. Marchenko 《Laser Physics》2010,20(6):1390-1396
The laser thermal melting of powders is used to fabricate selective emitters (SEs) that represent Nd2O3 and Y2O3-Nd2O3 polycrystals on quartz holders. The SEs are stable under atmospheric conditions upon multiple heating by laser radiation up to the melting point. The spectral shape and integral intensity of the selective heat radiation (SHR) of the Nd2O3 microcrystalline powder and the Nd2O3 and Y2O3-Nd2O3 polycrystals are experimentally studied in the near-IR and visible spectral ranges versus the intensity of the laser thermal excitation at a wavelength of 10.6 μm in comparison with the absorption and luminescence spectra of the YAG:Nd3+ and YAlO3:Nd3+ single crystals. The SHR spectra are determined by the vibronic transitions between the electronic states 2 G 7/2-4F3/2 4I11/2 and 4I9/2 of the Nd3+ ions that are thermally excited due to the multiphonon transitions from the ground state. The energy balance of the SE laser thermal heating is experimentally investigated. The coefficient of the laser energy conversion to the Nd3+ SHR is measured, and the emissivity of the SEs that can be used for the study of the thermophotovoltaic generators and the optical excitation of the laser-active media in the near-IR spectral range is estimated.  相似文献   

12.
The luminescence spectra of a KZnF3: Tl+ crystal are investigated in the energy range from 4.75 to 5.9 eV at temperatures of 10–300 K upon excitation into the A absorption band (5.7–6.3 eV). At T=300 K, the luminescence spectra exhibit an intense band with a maximum at 5.45 eV, which is attributed to single Tl+ ions substituted for K+ ions. The 5.723-eV intense narrow band observed at T<20 K is assigned to the 3Γ1u-1Γ1g zero-phonon transition, which is weakly allowed by the hyperfine interaction. The luminescence decay is studied as a function of temperature. The main characteristics of the luminescence spectra are adequately described in terms of the semiclassical theory based on the Franck-Condon principle and the Jahn-Teller effect for an excited sp configuration of the Tl+ ion with the use of the parameters obtained earlier from analyzing the absorption spectra of the system under investigation.  相似文献   

13.
This paper reports on the spectroscopic properties and energy transfer analysis of Tm3+-doped BaF2-Ga2O3-GeO2-La2O3 glasses with different Tm2O3 doping concentrations (0.2, 0.5, 2.0, 2.5, 3.0, 3.5, 3.5, 4.0 wt%). Mid-IR fluorescence intensities in the range of 1,300 nm−2,200 nm have been measured when excited under an 808 nm LD for all the samples with the same pump power. Energy level structure and Judd-Ofelt parameters have been calculated based on the absorption spectra of Tm3+, cross-relaxation rates and multi-phonon relaxation rates have been estimated with different Tm2O3 doping concentrations. The maximum fluorescence intensity at around 1.8 μm has been obtained in Tm2O3-3 wt% sample and the maximum value of calculated stimulated emission cross-section of Tm3+ in this sample is about 0.48 × 10−20 cm2 at 1,793 nm, and there is not any crystallization peak in the DSC curve of this sample, which indicate the potential utility of Tm3+-doped BaF2-Ga2O3-GeO2- La2O3 glass for 2.0-μm optical fiber laser.  相似文献   

14.
In this paper we study the possibility of using the synthesized nanopowder samples of Gd2Zr2O7:Eu3+ for temperature measurements by analyzing the temperature effects on its photoluminescence. The nanopowder was prepared by solution combustion synthesis method. The photoluminescence spectra used for analysis of Gd2Zr2O7:Eu3+ nano phosphor optical emission temperature dependence were acquired using continuous laser diode excitation at 405 nm. The temperature dependencies of line emission intensities of transitions from 5D0 and 5D1 energy levels to the ground state were analyzed. Based on this analysis we use the two lines intensity ratio method for temperature sensing. Our results show that the synthesized material can be efficiently used as thermographic phosphor up to 650 K.  相似文献   

15.
The complex impedance of the Ag2ZnP2O7 compound has been investigated in the temperature range 419–557 K and in the frequency range 200 Hz–5 MHz. The Z′ and Z′ versus frequency plots are well fitted to an equivalent circuit model. Dielectric data were analyzed using complex electrical modulus M* for the sample at various temperatures. The modulus plot can be characterized by full width at half-height or in terms of a non-exponential decay function f( \textt ) = exp( - \textt/t )b \phi \left( {\text{t}} \right) = \exp {\left( { - {\text{t}}/\tau } \right)^\beta } . The frequency dependence of the conductivity is interpreted in terms of Jonscher’s law: s( w) = s\textdc + \textAwn \sigma \left( \omega \right) = {\sigma_{\text{dc}}} + {\text{A}}{\omega^n} . The conductivity σ dc follows the Arrhenius relation. The near value of activation energies obtained from the analysis of M″, conductivity data, and equivalent circuit confirms that the transport is through ion hopping mechanism dominated by the motion of the Ag+ ions in the structure of the investigated material.  相似文献   

16.
The exchange charge model of crystal field theory has been used to analyze the ground and excited state absorption of tetrahedrally coordinated Cr4+ ion in lithium aluminum oxide LiAlO2 (γ-phase) and lithium dioxogallate LiGaO2. The parameters of the crystal field acting on the Cr4+ ion are calculated from the crystal structure data, taking into account the crystal lattice ions located at distances up to 12.744 Å in LiGaO2 and 13. 180 Å in LiAlO2. The obtained energy level schemes were compared with experimental ground and excited state absorption spectra and literature data on the application of other crystal field models (the angular overlap model and Racah theory) to the considered crystals; a good agreement with experimental data is demonstrated.  相似文献   

17.
The cationic conductivities of Cu2Se and Ag2Se superionic conductor solid solutions in the composition region from Cu2Se to Cu0.7Ag1.3Se are measured. It is demonstrated that the activation energy of ionic conduction depends only slightly on the chemical composition, varies from 0.14 to 0.17 eV, and exhibits a weakly pronounced maximum for the Ag0.44Cu1.56Se solid solution. The ionic Seebeck coefficients are measured for the Ag0.23Cu1.757Se solid solution. The heat of cation transfer in this solution is found to be equal to 0.144±0.014 eV from the Seebeck coefficients.  相似文献   

18.
1 at % Pr3+-doped Y2O3 single-crystal fibers were prepared using a laser-heated pedestal growth method. The emission and excitation spectra of the fibers were measured. The emissions of 4f-4f transitions from 1 D 2 to the 3 H 4 and 3 H 5 states are found at 620 and 720 nm, respectively. The 3 P 2, 3 P 1, 1 I 6, and 3 P 0 4f-4f absorptions are observed at 456, 472, 482, and 492 nm, respectively. A 4f-5d absorption band is detected at 288 nm. Photoconductivity measurements show that the 4f-5f transition of Pr3+ around 285 nm produces a direct photocurrent. Taking the onset of photocurrent to be at 320 nm, the ground state of Pr3+ is determined at 1.7 eV above the valence band of the host. The text was submitted by the authors in English.  相似文献   

19.
Terbium silica hybrid material with imidazole ring that can be emissive in water has been designed and showed host-guest interactions with specific ions (cations and anions). In detail, we studied the sensing abilities of this material by addition of the anions H2PO4-, HSO4-, F-, Cl-, Br- and I- to water suspension of the derived powders. Only dihydrogen phosphate resulted in the quenching of the lanthanide luminescence (detection limit 10-5 M). The same way was found in Cu2+ ions which also gave rise to luminescence quenching (detection limit 10-5 M). More interestingly, luminescent sol-gel films were successfully prepared by the same materials and exhibited emission responses to H2PO4- and Cu2+. For the sake of improving its mechanical property, the robust and flexible inorganic/PMMA hybrid material with sensing capability was also developed for future use.  相似文献   

20.
Anisotropy of the nonlinear absorption of Co2+ ions in MgAl2O4 single crystal at the wavelengths of 1.35 and 1.54 μm has been experimentally demonstrated. The experimental data are analyzed in the framework of a phenomenological model when the Co2+ ions are described as three sets of linear dipoles oriented along the crystallographic axes. Ground-state and excited state absorption cross-sections at 1.35 and 1.54 μm are evaluated to be σgsa=(4.0±0.3)×10-19, σesa=(3.6±0.4)×10-20 cm2 and σgsa=(5.1±0.3)×10-19, σesa=(4.6±0.4)×10-20 cm2, respectively. PACS 42.55.Rz; 71.20.Be  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号