首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider a model arising from biology, consisting of chemotaxis equations coupled to viscous incompressible fluid equations through transport and external forcing. Global existence of solutions to the Cauchy problem is investigated under certain conditions. Precisely, for the chemotaxis-Navier-Stokes system in two space dimensions, we obtain global existence for large data. In three space dimensions, we prove global existence of weak solutions for the chemotaxis-Stokes system with nonlinear diffusion for the cell density.  相似文献   

2.
We study the existence theory for the Cucker–Smale–Navier–Stokes (in short, CS–NS) equations in two dimensions. The CS–NS equations consist of Cucker–Smale flocking particles described by a Vlasov-type equation and incompressible Navier–Stokes equations. The interaction between the particles and fluid is governed by a drag force. In this study, we show the global existence of weak solutions for this system. We also prove the global existence and uniqueness of strong solutions. In contrast with the results of Bae et al. (2014) on the CS–NS equations considered in three dimensions, we do not require any smallness assumption on the initial data.  相似文献   

3.
We derive an exact formula for solutions to the Stokes equations in the half space with an external forcing term. This formula is used to establish local and global existence and uniqueness in a suitable Besov space for solutions to the Navier Stokes equations. In particular, wellposedness is proved for initial data in L3(R3 +).  相似文献   

4.
A fluid–particles system of the compressible Navier‐Stokes equations and Vlasov‐Fokker‐Planck equation (including the case of Vlasov equation) in three‐dimensional space is considered in this paper. The coupling arises from a drag force exerted by the fluid onto the particles. We study a Cauchy problem with large data, and establish the existence of global weak solutions through an approximation scheme, energy estimates, and weak convergence. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
This paper is devoted to the investigation of stability behaviors of Leray weak solutions to the three-dimensional Navier–Stokes equations. For a Leray weak solution of the Navier–Stokes equations in a critical Besov space, it is shown that the Leray weak solution is uniformly stable with respect to a small perturbation of initial velocity and external forcing. If the perturbation is not small, the perturbed weak solution converges asymptotically to the original weak solution as the time tends to the infinity. Additionally, an energy equality and weak–strong uniqueness for the three-dimensional Navier–Stokes equations are derived. The findings are mainly based on the estimations of the nonlinear term of the Navier–Stokes equations in a Besov space framework, the use of special test functions and the energy estimate method.  相似文献   

6.
In this work we consider a poroelastic, flexible material that may deform largely, which is situated in an incompressible fluid driven by the Navier–Stokes equations in two or three space dimensions. By a variational approach we show existence of weak solutions for a class of such coupled systems. We consider the unsteady case, this means that the PDE for the poroelastic solid involves the Fréchet-derivative of a non-convex functional as well as (second order in time) inertia terms.  相似文献   

7.
In this note, by constructing suitable approximate solutions, we prove the existence of global weak solutions to the compressible Navier–Stokes equations with density-dependent viscosity coefficients in the whole space or exterior domain, when the initial data are spherically symmetric. In particular, we prove the existence of spherically symmetric solutions to the Saint-Venant model for shallow water in the whole space (or exterior domain).  相似文献   

8.
In this paper, we are concerned with the system of the non‐isentropic compressible Navier–Stokes equations coupled with the Maxwell equations through the Lorentz force in three space dimensions. The global existence of solutions near constant steady states is established, and the time‐decay rates of perturbed solutions are obtained. The proof for existence is due to the classical energy method, and the investigation of large‐time behavior is based on the linearized analysis of the non‐isentropic Navier–Stokes–Poisson equations and the electromagnetic part for the linearized isentropic Navier–Stokes–Maxwell equations. In the meantime, the time‐decay rates obtained by Zhang, Li, and Zhu [J. Differential Equations, 250(2011), 866‐891] for the linearized non‐isentropic Navier–Stokes–Poisson equations are improved. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
The purpose of this work is to study the global-in-time existence of weak solutions of a viscous capillary model of plasma expressed as a so-called Navier–Stokes–Poisson–Korteweg model for large data in three-dimensional space. Using the compactness argument, we prove the existence of global weak solutions in the classical sense to such system with a cold pressure.  相似文献   

10.
A well-known diffuse interface model for incompressible isothermal mixtures of two immiscible fluids consists of the Navier–Stokes system coupled with a convective Cahn–Hilliard equation. In some recent contributions the standard Cahn–Hilliard equation has been replaced by its nonlocal version. The corresponding system is physically more relevant and mathematically more challenging. Indeed, the only known results are essentially the existence of a global weak solution and the existence of a suitable notion of global attractor for the corresponding dynamical system defined without uniqueness. In fact, even in the two-dimensional case, uniqueness of weak solutions is still an open problem. Here we take a step forward in the case of regular potentials. First we prove the existence of a (unique) strong solution in two dimensions. Then we show that any weak solution regularizes in finite time uniformly with respect to bounded sets of initial data. This result allows us to deduce that the global attractor is the union of all the bounded complete trajectories which are strong solutions. We also demonstrate that each trajectory converges to a single equilibrium, provided that the potential is real analytic and the external forces vanish.  相似文献   

11.
In this paper, we study the problem of global existence of weak solutions for the quasi-stationary compressible Stokes equations with an anisotropic viscous tensor. The key idea is a new identity that we obtain by comparing the limit of the equations of the energies associated to a sequence of weak-solutions with the energy equation associated to the system verified by the limit of the sequence of weak-solutions. In the context of stability of weak solutions, this allows us to construct a defect measure which is used to prove compactness for the density and therefore allowing us to identify the pressure in the limiting model. By doing so we avoid the use of the so-called effective flux. Using this new tool, we solve an open problem namely global existence of solutions à la Leray for such a system without assuming any restriction on the anisotropy amplitude. This provides a flexible and natural method to treat compressible quasilinear Stokes systems which are important for instance in biology, porous media, supra-conductivity or other applications in the low Reynolds number regime.  相似文献   

12.
We consider a system coupling the incompressible Navier-Stokes equations to the Vlasov-Fokker-Planck equation. The coupling arises from a drag force exerted by each other. We establish existence of global weak solutions for the system in two and three dimensions. Furthermore, we obtain the existence and uniqueness result of global smooth solutions for dimension two. In case of three dimensions, we also prove that strong solutions exist globally in time for the Vlasov-Stokes system.  相似文献   

13.
We study the global well-posedness and existence of uniform attractor for magnetohydrodynamic (MHD) equations. The hydrodynamic system consists of the Navier–Stokes equations for the fluid velocity and pressure coupled with a reduced from of the Maxwell equations for the magnetic field. The fluid velocity is assumed to satisfy a no-slip boundary condition, while the magnetic field is subject to a time-dependent Dirichlet boundary condition. We first establish the global existence of weak and strong solutions to Equations (1.1)-(1.4). And at this stage, we further derive the existence of a uniform attractor for Equations (1.1)-(1.4).  相似文献   

14.
The existence of global weak renormalized solutions to the evolution flow problems for compressible Navier–Stokes equations is established. The in/out flow problem in a bounded domain in three spatial dimensions is considered. A general mathematical theory for the flow problem is developed. Bibliography: 15 titles.  相似文献   

15.
In this paper, the long time behaviors of g-Navier–Stokes equations with linear dampness on R2 were investigated. By using the energy equation method, the existence of the global attractor for the equations was proved without the restriction of the forcing term belonging to some weighted Sobolev space. Moreover, the estimation of the Hausdorff and Fractal dimensions of such attractors were also obtained.  相似文献   

16.
In this paper, we consider the Cauchy problem for the three dimensional chemotaxis-Navier–Stokes equations. By exploring the new a priori estimates, we prove the global existence of weak solutions for the 3D chemotaxis-Navier–Stokes equations.  相似文献   

17.
The existence and the uniqueness of solutions to a problem of miscible liquids are investigated in this note. The model consists of Navier–Stokes equations with Korteweg stress terms coupled with the reaction–diffusion equation for the concentration. We assume that the fluid is incompressible and the Boussinesq approximation is adopted. The global existence and uniqueness of solutions is established for some optimal conditions on the reaction source term and the external force functions.  相似文献   

18.
We prove the global-in-time existence of weak solutions to the Navier–Stokes equations of compressible isentropic flow in three space dimensions with adiabatic exponent γ ≥ 1. Initial data and solutions are small in L 2 around a non-constant steady state with densities being positive and essentially bounded. No smallness assumption is imposed on the external forces when γ = 1. A great deal of information about partial regularity and large-time behavior is obtained.  相似文献   

19.
Recently, the Navier–Stokes–Voight (NSV) model of viscoelastic incompressible fluid has been proposed as a regularization of the 3D Navier–Stokes equations for the purpose of direct numerical simulations. In this work, we prove that the global attractor of the 3D NSV equations, driven by an analytic forcing, consists of analytic functions. A consequence of this result is that the spectrum of the solutions of the 3D NSV system, lying on the global attractor, have exponentially decaying tail, despite the fact that the equations behave like a damped hyperbolic system, rather than the parabolic one. This result provides additional evidence that the 3D NSV with the small regularization parameter enjoys similar statistical properties as the 3D Navier–Stokes equations. Finally, we calculate a lower bound for the exponential decaying scale—the scale at which the spectrum of the solution start to decay exponentially, and establish a similar bound for the steady state solutions of the 3D NSV and 3D Navier–Stokes equations. Our estimate coincides with the known bounds for the smallest length scale of the solutions of the 3D Navier–Stokes equations, established earlier by Doering and Titi.   相似文献   

20.
We study the 3‐D compressible Navier–Stokes equations with an external potential force and a general pressure. We prove the global‐in‐time existence of weak solutions with small‐energy initial data and with densities being positive and essentially bounded. No smallness assumption is made on the external force. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号