首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
T.-S. Chen 《代数通讯》2013,41(12):4457-4466
ABSTRACT

Let A = A 0 ⊕ A 1 be an associative superalgebra over a commutative associative ring F, and let Z s (A) be its supercenter. An F-mapping f of A into itself is called supercentralizing on a subset S of A if [x, f(x)] s  ∈ Z s (A) for all x ∈ S. In this article, we prove a version of Posner's theorem for supercentralizing superderivations on prime superalgebras.  相似文献   

2.
Jung Wook Lim 《代数通讯》2015,43(1):345-356
Let * be a star-operation of finite type on an integral domain D. In this paper, we generalize and study the concept of almost splitting sets. We define a saturated multiplicative subset S of D to be an almost g*-splitting set of D if for each 0 ≠ d ∈ D, there exists an integer n = n(d) ≥1 such that d n  = st for some s ∈ S and t ∈ D with (t, s′)* = D for all s′ ∈ S. Among other things, we prove that every saturated multiplicative subset of D is an almost g*-splitting set if and only if D is an almost weakly factorial domain (AWFD) with *-dim (D) = 1. We also give an example of an almost g*-splitting set which is not a g*-splitting set.  相似文献   

3.
Bernd Billhardt 《代数通讯》2013,41(9):3521-3532
A semigroup S is said to have an associate subgroup G if, for each s ∈ S, there is a unique s* ∈ G such that ss*s = s. If the identity 1 G of G is medial, i.e., c1 G c = c holds for each c being a product of idempotents, we show that S is isomorphic to a certain subsemigroup of a semidirect product of an idempotent generated semigroup C by G. If additionally S is orthodox, we may choose C to be a band, belonging to the band variety, generated by the band of idempotents of S.  相似文献   

4.
5.
Gyu Whan Chang 《代数通讯》2013,41(11):4246-4258
A subring A of a Prüfer domain B is a globalized pseudo-valuation domain (GPVD) if (i) A?B is a unibranched extension and (ii) there exists a nonzero radical ideal I, common to A and B such that each prime ideal of A (resp., B) containing I is maximal in A (resp., B). Let D be an integral domain, X be an indeterminate over D, c(f) be the ideal of D generated by the coefficients of a polynomial f ∈ D[X], N = {f ∈ D[X] | c(f) = D}, and N v  = {f ∈ D[X] | c(f)?1 = D}. In this article, we study when the Nagata ring D[X] N (more generally, D[X] N v ) is a GPVD. To do this, we first use the so-called t-operation to introduce the notion of t-globalized pseudo-valuation domains (t-GPVDs). We then prove that D[X] N v is a GPVD if and only if D is a t-GPVD and D[X] N v has Prüfer integral closure, if and only if D[X] is a t-GPVD, if and only if each overring of D[X] N v is a GPVD. As a corollary, we have that D[X] N is a GPVD if and only if D is a GPVD and D has Prüfer integral closure. We also give several examples of integral domains D such that D[X] N v is a GPVD.  相似文献   

6.
《代数通讯》2013,41(4):1633-1642
Abstract

Let D be an integral domain, S ? D a multiplicative set such that aD S  ∩ D is a principal ideal for each a ∈ D and let D (S) = ? sS D[X/s]. It is known that if D is a Prüfer v-multiplication domain (resp., generalized GCD domain, GCD domain), then so is D (S) respectively. When D is a Noetherian domain, we obtain a similar result for the power series analog D ((S)) = ? sS D[[X/s]] of D (S). Our approach takes care simultaneously of both cases D (S) and D ((S)).  相似文献   

7.
Katrina Barron 《代数通讯》2013,41(4):1199-1268
We formulate the notion of “N = 2 vertex superalgebra with two odd formal variables” using a Jacobi identity with odd formal variables in which an N = 2 superconformal shift is incorporated into the usual Jacobi identity for a vertex superalgebra. It is shown that as a consequence of these axioms, the N = 2 vertex superalgebra is naturally a representation of the Lie superalgebra isomorphic to the three-dimensional algebra of superderivations with basis consisting of the usual conformal operator and the two N = 2 superconformal operators. In addition, this superconformal shift in the Jacobi identity dictates the form of the odd formal variable components of the vertex operators, and allows one to easily derive the useful formulas in the theory. The notion of N = 2 Neveu–Schwarz vertex operator superalgebra with two odd formal variables is introduced, and consequences of this notion are derived. In particular, we develop the duality properties which are necessary for a rigorous treatment of the correspondence with the underlying supergeometry. Various other formulations of the notion of N = 2 (Neveu–Schwarz) vertex (operator) superalgebra appearing in the mathematics and physics literature are discussed, and several mistakes in the literature are noted and corrected.  相似文献   

8.
We consider the scattering theory for a pair of operators H0 and H = H0 + V on L2(M, m), where M is a Riemannian manifold, H0 is a multiplication operator on M, and V is a pseudodifferential operator of order ? μ, μ > 1. We show that a time-dependent scattering theory can be constructed, and the scattering matrix is a pseudodifferential operator on each energy surface. Moreover, the principal symbol of the scattering matrix is given by a Born approximation type function. The main motivation of the study comes from applications to discrete Schrödigner operators, and it also applies to various differential operators with constant coefficients and short-range perturbations on Euclidean spaces.  相似文献   

9.
The quasi-reversibility method is considered for the non-homogeneous backward Cauchy problem ut+Au = f(t), u(τ) = ? for 0≤t<τ, which is known to be an ill-posed problem. Here, A is a densely defined positive self-adjoint unbounded operator on a Hilbert space H with given data fL1([0,τ],H) and ?H. Error analysis is considered when the data ?, f are exact and also when they are noisy. The results obtained generalize and simplify many of the results available in the literature.  相似文献   

10.
Basudeb Dhara 《代数通讯》2013,41(6):2159-2167
Let R be a prime ring of char R ≠ 2, d a nonzero derivation of R, U a noncentral Lie ideal of R, and a ∈ R. If au n 1 d(u) n 2 u n 3 d(u) n 4 u n 5 d(u) n k?1 u n k  = 0 for all u ∈ U, where n 1, n 2,…,n k are fixed non-negative integers not all zero, then a = 0 and if a(u s d(u)u t ) n  ∈ Z(R) for all u ∈ U, where s ≥ 0, t ≥ 0, n ≥ 1 are some fixed integers, then either a = 0 or R satisfies S 4, the standard identity in four variables.  相似文献   

11.
Tomohiro Itagaki 《代数通讯》2013,41(8):3472-3497
In this article, we compute the Hochschild homology group of A = KΓ/(f(X s )), where KΓ is the path algebra of the cyclic quiver Γ with s vertices and s arrows over a commutative ring K, f(x) is a monic polynomial over K, and X is the sum of all arrows in KΓ. Moreover, we compute the cyclic homology group of A in the case f(x) = (x ? a) m , where a ∈ K, so that we can determine the cyclic homology of A in general when K is an algebraically closed field.  相似文献   

12.
For any field 𝕂 and integer n ≥ 2, we consider the Leavitt algebra L 𝕂(n); for any integer d ≥ 1, we form the matrix ring S = M d (L 𝕂(n)). S is an associative algebra, but we view S as a Lie algebra using the bracket [a, b] = ab ? ba for a, b ∈ S. We denote this Lie algebra as S ?, and consider its Lie subalgebra [S ?, S ?]. In our main result, we show that [S ?, S ?] is a simple Lie algebra if and only if char(𝕂) divides n ? 1 and char(𝕂) does not divide d. In particular, when d = 1, we get that [L 𝕂(n)?, L 𝕂(n)?] is a simple Lie algebra if and only if char(𝕂) divides n ? 1.  相似文献   

13.
Christian Gottlieb 《代数通讯》2013,41(12):5131-5140
Three related properties of a module are investigated in this article, namely the Nakayama property, the Maximal property, and the S-property. A module M has the Nakayama property if 𝔞M = M for an ideal 𝔞 implies that sM = 0 for some s ∈ 𝔞 + 1. A module M has the Maximal property if there is in M a maximal proper submodule, and finally, M is said to have the S-property if S ?1 M = 0 for a multiplicatively closed set S implies that sM = 0 for some s ∈ S.  相似文献   

14.
William C. Brown 《代数通讯》2013,41(8):2401-2417
Let Rbe a commutative ring and A?M m×n . The spanning rank of Ais the smallest positive integer s for which A=PQ(m×s s×n) The spanning rank of the zero matrix is set equal to zero. If Ris a field, then the spanning rank of Ais just the classical rank of A. In the first section of this paper, various theorems and examples are given which indicate how much of the classical theory of rank is still valid for spanning rank over a commutative ring. If A= PQ(n×s s×n) is a spanning rank factorization of a square matrix and D= QP, then Dis called a spanning rank partner of A. In the second part of this paper, the null ideals N Aand N Dof Aand Drespectively are compared. For instance, we show N A=N Dif s= nand N A= XN Dif s<nwhenever Ris a PIDand A≠0. This result sometimes (e.g. s<<n) makes the computation of N Aeasy.  相似文献   

15.
Let S be a semi direct product S=N\rtimes AS=N\rtimes A where N is a connected and simply connected nilpotent Lie group and A is isomorphic with ℝ k , k > 1. We obtain an upper bound for the Poisson kernel for the class of second order left-invariant differential operators on S.  相似文献   

16.
Huanyin Chen 《代数通讯》2013,41(10):3567-3579
An ideal I of a ring R is generalized stable in case aR + bR = R with a ∈ I, b ∈ R implies that there exist s, t ∈ 1 + I such that s(a + by)t = 1 for a y ∈ R. We establish, in this article, necessary and sufficient conditions for an ideal of a regular ring to be generalized stable. It is shown that every regular square matrix over such ideals admits a diagonal reduction. These extend the corresponding results of generalized stable regular rings.  相似文献   

17.
George Szeto 《代数通讯》2013,41(12):3979-3985
Let B be a Galois algebra over a commutative ring R with Galois group G such that B H is a separable subalgebra of B for each subgroup H of G. Then it is shown that B satisfies the fundamental theorem if and only if B is one of the following three types: (1) B is an indecomposable commutative Galois algebra, (2) B = Re ⊕ R(1 ? e) where e and 1 ? e are minimal central idempotents in B, and (3) B is an indecomposable Galois algebra such that for each separable subalgebra A, V B (A) = ?∑ gG(A) J g , and the centers of A and B G(A) are the same where V B (A) is the commutator subring of A in B, J g  = {b ∈ B | bx = g(x)b for each x ∈ B} for a g ∈ G, and G(A) = {g ∈ G | g(a) = a for all a ∈ A}.  相似文献   

18.
Mario Petrich 《代数通讯》2013,41(10):4097-4116
Let S be any semigroup and a, s ∈ S. If a = asa, then s is an associate of a. A subgroup G of S is an associate subgroup of S if every a ∈ S has a unique associate a* in G. It turns out that G = H z for some idempotent z, the zenith of S. The mapping a → a* is a unary operation on S. We say that S is monogenic if S is generated, as a unary semigroup, by a single element.

We embark upon the problem of the structure of monogenic semigroups in this sense by characterizing monogenic ones belonging to completely simple semigroups, normal cryptogroups, orthogroups, combinatorial semigroups, cryptic medial semigroups, cryptic orthodox semigroups, and orthodox monoids. In each of these cases, except one, we construct a free object. The general problem remains open.  相似文献   

19.
ABSTRACT

Let G be a connected, linear algebraic group defined over ?, acting regularly on a finite dimensional vector space V over ? with ?-structure V ?. Assume that V possesses a Zariski-dense orbit, so that (G, ?, V) becomes a prehomogeneous vector space over ?. We consider the left regular representation π of the group of ?-rational points G ? on the Banach space C0(V ?) of continuous functions on V ? vanishing at infinity, and study the convolution operators π(f), where f is a rapidly decreasing function on the identity component of G ?. Denote the complement of the dense orbit by S, and put S ? = S ∩ V ?. It turns out that, on V ? ? S ?, π(f) is a smooth operator. If S ? = {0}, the restriction of the Schwartz kernel of π(f) to the diagonal defines a homogeneous distribution on V ? ? {0}. Its nonunique extension to V ? can then be regarded as a trace of π(f). If G is reductive, and S and S ? are irreducible hypersurfaces, π(f) corresponds, on each connected component of V ? ? S ?, to a totally characteristic pseudodifferential operator. In this case, the restriction of the Schwartz kernel of π(f) to the diagonal defines a distribution on V ? ? S ? given by some power |p(m)| s of a relative invariant p(m) of (G, ?, V) and, as a consequence of the Fundamental Theorem of Prehomogeneous Vector Spaces, its extension to V ?, and the complex s-plane, satisfies functional equations similar to those for local zeta functions. A trace of π(f) can then be defined by subtracting the singular contributions of the poles of the meromorphic extension.  相似文献   

20.
Mark Grinshpon 《代数通讯》2013,41(7):2619-2624
Given rings R ? S, consider the division closure 𝒟(R, S) and the rational closure ?(R, S) of R in S. If S is commutative, then 𝒟(R, S) = ?(R, S) = RT ?1, where T = {t ∈ R | t ?1 ∈ S}. We show that this is also true if we assume only that R is commutative.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号