首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Shock wave structure in a bubbly mixture composed of a cluster of gas bubbles in a quiescent liquid with initial void fractions around 10% inside a 3D rectangular domain excited by a sudden increase in the pressure at one boundary is investigated using the front tracking/finite volume method. The effects of bubble/bubble interactions and bubble deformations are, therefore, investigated for further modeling. The liquid is taken to be incompressible while the bubbles are assumed to be compressible. The gas pressure inside the bubbles is taken uniform and is assumed to vary isothermally. Results obtained for the pressure distribution at different locations along the direction of propagation show the characteristics of one-dimensional unsteady shock propagation evolving towards steady-state. The steady-state shock structures obtained by the present direct numerical simulations, which show a transition from A-type to C-type steady-state shock structures, are compared with those obtained by the classical Rayleigh–Plesset equation and by a modified Rayleigh–Plesset equation accounting for bubble/bubble interactions in the mean-field theory.   相似文献   

2.
The present work deals with the numerical investigation of a collapsing bubble in a liquid–gas fluid, which is modeled as a single compressible medium. The medium is characterized by the stiffened gas law using different material parameters for the two phases. For the discretization of the stiffened gas model, the approach of Saurel and Abgrall is employed where the flow equations, here the Euler equations, for the conserved quantities are approximated by a finite volume scheme, and an upwind discretization is used for the non‐conservative transport equations of the pressure law coefficients. The original first‐order discretization is extended to higher order applying second‐order ENO reconstruction to the primitive variables. The derivation of the non‐conservative upwind discretization for the phase indicator, here the gas fraction, is presented for arbitrary unstructured grids. The efficiency of the numerical scheme is significantly improved by employing local grid adaptation. For this purpose, multiscale‐based grid adaptation is used in combination with a multilevel time stepping strategy to avoid small time steps for coarse cells. The resulting numerical scheme is then applied to the numerical investigation of the 2‐D axisymmetric collapse of a gas bubble in a free flow field and near to a rigid wall. The numerical investigation predicts physical features such as bubble collapse, bubble splitting and the formation of a liquid jet that can be observed in experiments with laser‐induced cavitation bubbles. Opposite to the experiments, the computations reveal insight to the state inside the bubble clearly indicating that these features are caused by the acceleration of the gas due to shock wave focusing and reflection as well as wave interaction processes. While incompressible models have been used to provide useful predictions on the change of the bubble shape of a collapsing bubble near a solid boundary, we wish to study the effects of shock wave emissions into the ambient liquid on the bubble collapse, a phenomenon that may not be captured using an incompressible fluid model. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
The properties are studied of the propagation of unsteady shock waves in a gas-liquid system of bubble structure in the case when the volume concentration of the gas changes in the direction of motion of the shock wave. It is established that when there is a sufficiently rapid drop in the gas content, an effect of amplification of the shock wave is observed which is due to the deceleration of the medium behind the shock wave. A study is made of the laws of the evolution of long- and short-wave pulsed perturbations in such systems. The authors consider processes of reflection of waves from obstacles and their passage from a gas into a bubble liquid, from a two-phase mixture into a pure liquid. The contribution is determined of nonequilibrium effects to the process of amplification of a wave.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 49–54, January–February, 1988.The authors wish to express gratitude to R. I. Nigmatulin for his interest in the study and for useful discussions.  相似文献   

4.
The collapse of a nano-bubble near a solid wall is addressed here exploiting a phase field model recently used to describe the process in free space. Bubble collapse is triggered by a normal shock wave in the liquid. The dynamics is explored for different bubble wall normal distances and triggering shock intensities. Overall the dynamics is characterized by a sequence of collapses and rebounds of the pure vapor bubble accompanied by the emission of shock waves in the liquid. The shocks are reflected by the wall to impinge back on the re-expanding bubble. The presence of the wall and the impinging shock wave break the symmetry of the system, leading, for sufficiently strong intensity of the incoming shock wave, to the poration of the bubble and the formation of an annular structure and a liquid jet. Intense peaks of pressure and temperatures are found also at the wall, confirming that the strong localized loading combined with the jet impinging the wall is a potential source of substrate damage induced by the cavitation.  相似文献   

5.
王畅畅  王国玉  黄彪 《力学学报》2018,50(5):990-1002
为深入研究空化可压缩流动中空泡/空泡团溃灭过程中激波产生、传播及其与空穴相互作用规律,本文采用数值模拟方法对空化可压缩流动空穴溃灭激波特性展开了研究.数值计算基于OpenFOAM开源程序,综合考虑蒸汽相和液相的压缩性,通过在原无相变两相可压缩求解器的控制方程中耦合模拟空化汽液相间质量交换的源项,实现了对空化流动的非定常可压缩计算.利用上述考虑汽/液相可压缩性的空化流动求解器,对周期性云状空化流动进行了数值模拟,并重点研究了空穴溃灭激波特性.结果表明:上述数值计算方法可以准确捕捉到空穴非定常演化过程及大尺度脱落空泡云团溃灭激波现象,大尺度脱落空泡云团溃灭过程分为3个阶段:(1) U型空泡团形成; (2) U型空泡团头部溃灭; (3) U型空泡团腿部溃灭.在U 型空泡团腿部溃灭瞬间,观察到激波产生,并向上游和下游传播,向上游传播的激波与空穴相互作用,导致水翼吸力面新生的附着型片状空穴回缩,直至完全溃灭.并且空穴溃灭激波存在回弹现象, 抑制了下一周期的空化发展.   相似文献   

6.
7.
 This paper describes experiments in which a shock wave, emanating from the collapse of a cavitation bubble, causes a second bubble to collapse, thereby producing a liquid jet. A comparison of the jets formed by bubble collapse in dilute solutions of polyacrylamide and polyethylene oxide, and in their Newtonian counterparts, shows that in the polymer solutions liquid jet development is markedly suppressed. The implications of these findings are discussed in the context of cavitation damage. Received: 3 September 1998/Accepted: 23 July 1999  相似文献   

8.
Fluid-solid coupling typically plays a negligible role in confined converging shocks in gases because of the rigidity of the surrounding material and large acoustic impedance mismatch of wave propagation between it and the gas. However, this is not true for converging shocks in a liquid. In the latter case, the coupling can not be ignored and properties of the surrounding material have a direct influence on wave propagation. In shock focusing in water confined in a solid convergent geometry, the shock in the liquid transmits to the solid and both transverse and longitudinal waves propagate in the solid. Shock focusing in water for three types of confinement materials has been studied experimentally with schlieren and photoelasticity optical techniques. A projectile from a gas gun impacts a liquid contained in a solid convergent geometry. The impact produces a shock wave in water that develops even higher pressure when focused in the vicinity of the apex. Depending on the confining material, the shock speed in the water can be slower, faster, or in between wave speeds in the solid. For solid materials with higher wave speeds than the shock in water, regions in the water is put in tension and cavitation occurs. Materials with slower wave speeds will deform easily.  相似文献   

9.
Three different approaches to macro-mechanical modeling of blast-wave mitigation in foam namely: the single-phase effective gas flow model, the two-phase mixture model and the single bubble/shock wave interaction model are critically reviewed. The nature and extent of the approximations inherent in the formulation of the first two models were examined in Part I of this study. In this part, the applicability of the aforementioned approaches is verified based on a comparison of experimental pressure records obtained in shock tube tests with the results of numerical predictions that used the models under consideration. Deficiencies and inconsistencies that are found during this comparison are clarified and possible improvements are suggested. It is emphasized that both the single-phase and the two-phase approaches predict well the refraction of the incident shock at the air/foam interface while they do not uniquely determine the relaxation process and the shape of the transmitted shock wave front. Various flexibilities that are exploited to better describe the inter-phase interactions do not improve the results significantly. The single bubble model is examined with particular attention paid to the manner in which it predicts the shape of the shock wave front. Connections between the flow viscosity and the transient dynamics of the bubble compression that occur at scales of the shock wave front thickness are explored.  相似文献   

10.
The nature of the propagation of shock waves in various media is related to the characteristics of the latter, including their compressibility, thermophysical properties, the presence of multiple phases, etc. The structure of a shock wave varies appreciably as a function of the properties of the medium. The most significant property of a liquid mixture with gas bubbles is the compressibility of the latter under the influence of an externally applied pressure, for example, in a shock wave propagating in the liquid—gas medium. The transfer of momentum and energy between phases and the pressure variation behind the wave depends on the behavior of the gas bubbles behind the shock front.  相似文献   

11.
采用高速纹影法实验研究了柱形汇聚激波与球形重气体界面相互作用的 Richtmyer-Meshkov不稳定性问题. 激波管实验段基于激波动力学理论设计, 将马赫数为1.2 的平面激波转化为柱形汇聚激波, 气体界面由肥皂膜分隔六氟化硫(内)和空气(外)得到. 采用高速摄影机在单次实验中拍摄激波运动的全过程, 对柱形激波的形成进行了实验验证, 并进一步观测了汇聚激波与球形气体界面相互作用过程中的波系发展和气体界面变形以及反射激波同已变形界面二次作用的流场演化. 结果表明: 当柱形汇聚激波穿过气泡界面以后, 气泡左侧界面极点沿激波传播方向保持匀速运动, 气泡右侧界面发展成为射流结构, 气泡主体发展成为涡环结构; 在反射激波的二次作用下, 流场中无序运动显著增强并很快进入湍流混合阶段.  相似文献   

12.
The nonlinear problem of thermal and dynamic interaction between a single gas bubble and surrounding liquid is considered. This problem is met in studies of gas-liquid mixture flows, in particular, in Shockwave propagation in such media. A numerical solution is presented for various modes of bubble surface radial motion. The modes correspond to bubble behavior directly beyond a shock-wave front, where the latter enters the bubble screen, and to the behavior of a bubble located in the depths of the bubble curtain, where the wave becomes diffuse. Analytic solutions of the linearized problem of thermal conductivity for free and constrained small harmonic oscillations of a gas bubble in a liquid were obtained in [1, 2]. Cooling of a hot gas bubble was considered in [3], that study, however, contains inaccuracies. In particular, it was assumed in the solution that the gas density in the bubble was homogeneous. The equation for heat flux in dimensionless variables was written inaccurately. However, in the examples considered in [3] these inaccuracies do not lead to significant errors in the numerical results.  相似文献   

13.
修晨曦  楚锡华 《力学学报》2018,50(2):315-328
基于颗粒材料冲击与波动响应特性的调控波传播行为的超材料设计受到广泛关注,设计这类材料需要对颗粒材料的波传播机制及调控机理有深入认识. 波在颗粒材料中传播的频散现象及频率带隙等行为与材料的非均匀性密切相关,通常讨论频散现象是基于弹性理论框架建立微结构连续体或高阶梯度连续体等广义连续体模型来进行. 本研究基于细观力学给出了一个颗粒材料的微形态连续体模型. 在该模型中,考虑了颗粒的平动和转动,且颗粒间的相对运动分解为两部分:即宏观平均运动和细观真实运动. 基于此分解,提出了一个完备的变形模式,得到了对应于不同应变及颗粒间运动的宏细观本构关系. 结合宏观变形能的细观变形能求和表达式,获得了基于细观量表示的宏观本构模量. 应用所建议模型考察了波在弹性颗粒介质的传播行为,给出了不同形式的波的频散曲线,结果显示此模型具有预测频率带隙的能力.   相似文献   

14.
15.
A hydroshock in a two-phase gas-liquid mixture is usually calculated by an analog of the Zhukovskii formula for a mixture (see, for example, [1, 2]) which establishes the relation of the hydro-shock intensity to the velocity of sound in the mixture. However, as the experimental data [1] show, the hydroshock intensity in the mixture can significantly exceed the calculated values, a fact which is explained by the increase in the propagation velocity of the perturbation wave in comparison to the velocity of sound in the mixture [3, 4]. In the present paper, an equilibrium model of shock transition, similar to [5, 6], is used to calculate the attenuation of the hydroshock as the gas content of the mixture increases in a bubble flow regime. It is shown that owing to the high compressibility of the mixture the effect of the elasticity of the pipe-line walls is small, and the dependence of the propagation velocity of the perturbation wave on the intensity and gas content becomes the main effect. A simple dependence of the hydroshock intensity on the gas content and two similarity parameters is obtained.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 202–204, September–October, 1984.  相似文献   

16.
水下爆炸过程中存在着大量的空化现象,空化的产生、演化及其溃灭过程对于水下冲击波传播、爆炸气泡运动以及水下结构物冲击损伤都会产生重要影响。本文基于多相可压缩流体理论模型,考虑空化发生过程中汽-液两相流体亚平衡状态下两相之间发生的热力学-化学平衡机制,分析汽-液两相介质之间的质量和热量交换,从而实现对相变过程的自动捕捉。该系统的控制方程采用分步法处理,首先利用二阶MUSCL-Hancock格式和HLLC黎曼求解器来求解齐次双曲型方程,再采用牛顿迭代法求解相变方程。数值测试结果表明,本文的计算模型对于空化相变过程具有较好的捕捉能力。最后将该模型应用到水下近水面爆炸空化的数值模拟当中,研究发现空泡的溃灭压力峰值约为冲击波压力峰值的15%,有效作用时间是冲击波载荷有效作用时间的2倍以上。本文的空化相变模型能够为水下爆炸空化现象的机理研究提供重要支撑。  相似文献   

17.
An evolutionary equation describing a nonlinear wave process in a gas-bubble-liquid mixture is derived. In the mixture interphase heat transfer takes place due to deviation of the gas behavior from adiabatic. Exact partial solutions describing the structures of both shock waves and solitons are given. The mechanism of maximum compression in a shock wave structure propagating in a mixture containing bubbles of a dissolving gas is elucidated. The interval of variation of the input bubble radius on which, as a result of compression, the steady-state wave profile is nonmonotonic is found. A wave profile with an oscillatory structure is shown to exist. Numerical calculations based on the formulas obtained are found to be in fairly satisfactory agreement, at least qualitatively, with the experimental data known to the author.  相似文献   

18.
Simulation was performed of the behavior of a vapor bubble in a liquid under laser irradiation in laboratory experiments. A mathematical model was developed to analyze the effect of heat conduction, diffusion, and mass transfer on the bubble dynamics under compression and expansion. It is found that at the stage of collapse, intense condensation occurs on the bubble wall, which results in a significant (more than 15fold) decrease in bubble mass and an increase in pressure (to 105 atm) and temperature (to 104 K(. Results of numerical calculations of the radius of the first rebound and the amplitude of the divergent shock wave in water are compared with experimental data. It is shown that small (:about 1%) additives of an incondensable gas lead to a considerable decrease in mass transfer on the bubble wall.  相似文献   

19.
20.
预混火焰界面的RM (Richtmyer-Meshkov)不稳定导致的界面混合区增长过程在自然界和工程实践中十分常见,但化学反应对其增长的影响机理仍不明确,反应性界面混合区增长速率的预测也未见报道, 因此,开展RM不稳定过程中火焰界面演化和混合区预测的研究十分必要.本文采用带单步化学反应的Navier-Stokes方程和高精度数值格式,研究了正弦形预混火焰界面在平面入射激波及其反射激波作用下的RM不稳定过程.结果表明, 在入射激波作用后的阶段,除RM不稳定本身导致的界面演化为"钉-帽"和"泡"形结构外,化学反应一方面以预混火焰传播的方式促进了界面中"泡"结构的增长,另一方面通过与涡结构的复杂相互作用促进了"钉-帽"结构的增长.化学反应活性越强, 火焰界面的"泡" 结构和"钉-帽"结构的增长越快.在第一次反射激波作用后的阶段,化学反应以相同的火焰传播方式对"泡"和"钉-帽"结构产生影响, 两者效应相抵,因而导致反射激波作用后的阶段中界面混合区增长不受化学反应活性的影响.根据以上分析,分别针对入射激波和第一次反射激波作用后的火焰界面混合区增长速率提出了相应的预测模型,为探索反应性RM不稳定过程的理论预测方法提供了有益参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号