首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
吴琴  李飞 《中国物理快报》2007,24(3):640-643
We study the chaotic dynamics of a periodically modulated Josephson junction with damping. The general solution of the first-order perturbed equation is constructed by using the direct perturbation technique. It is theoretically found that the boundedness conditions of the general solution contain the Melnikov chaotic criterion. When the perturbation conditions cannot be satisfied, numerical simulations demonstrate that the system can step into chaos through a period doubling route with the increase of the amplitude of the modulating term. Regulating specific parameters can effectively suppress the chaos.  相似文献   

2.
Chua 's circuit with a slow-fast effect is established under certain parameter conditions. The dynamics of this slow- fast system is investigated. A spiking phenomenon can be observed in the numerical simulation. By introducing slow-fast analysis and a generalized Jacobian matrix at the non-smooth boundaries, the bifurcation mechanism for the periodic spiking solution, different from the smooth case, is discussed.  相似文献   

3.
A Hyperchaotic Attractor Coined from Chaotic Lü System   总被引:2,自引:0,他引:2       下载免费PDF全文
We report a new hyperchaotic attractor coined from the chaotic Lü system by using a state feedback controller. Theoretical analyses and simulation experiments are conducted to investigate the dynamical behaviour of the proposed hyperchaotic system  相似文献   

4.
We experimentally demonstrate the butterfly-shaped chaotic attractor we have proposed before lint. J. Nonlin. Sci. Numerical Simulation 7 (2006) 187]. Some basic dynamical properties and chaotic behaviour of this new butterfly attractor are studied and they are in agreement with the results of our theoretical analysis. Moreover, the proposed system is experimental demonstrated.  相似文献   

5.
In this paper we study different aspects of the paradigmatic Rössler model. We perform a detailed study of the local and global bifurcations of codimension one and two of limit cycles. This provides us a global idea of the three-parametric evolution of the system. We also study the regions of parameters where we may expect a chaotic behavior by the use of different Chaos Indicators. The combination of the different techniques gives an idea of the different routes to chaos and the different kinds of chaotic attractors we may found in this system.  相似文献   

6.
Piecewise smooth maps occur in a variety of physical systems. We show that in a two-dimensional continuous map a chaotic orbit can exist even when the map is contractive (eigenvalues less than unity in magnitude) at every point in the phase space. In this Letter we explain this peculiar feature of piecewise smooth continuous maps.  相似文献   

7.
There is by now a large consensus in modern monetary policy. This consensus has been built upon a dynamic general equilibrium model of optimal monetary policy as developed by, e.g., Goodfriend and King [NBER Macroeconomics Annual 1997 edited by B. Bernanke and J. Rotemberg (Cambridge, Mass.: MIT Press, 1997), pp. 231–282], Clarida et al. [J. Econ. Lit. 37, 1661 (1999)], Svensson [J. Mon. Econ. 43, 607 (1999)] and Woodford [Interest and Prices: Foundations of a Theory of Monetary Policy (Princeton, New Jersey, Princeton University Press, 2003)]. In this paper we extend the standard optimal monetary policy model by introducing nonlinearity into the Phillips curve. Under the specific form of nonlinearity proposed in our paper (which allows for convexity and concavity and secures closed form solutions), we show that the introduction of a nonlinear Phillips curve into the structure of the standard model in a discrete time and deterministic framework produces radical changes to the major conclusions regarding stability and the efficiency of monetary policy. We emphasize the following main results: (i) instead of a unique fixed point we end up with multiple equilibria; (ii) instead of saddle-path stability, for different sets of parameter values we may have saddle stability, totally unstable equilibria and chaotic attractors; (iii) for certain degrees of convexity and/or concavity of the Phillips curve, where endogenous fluctuations arise, one is able to encounter various results that seem intuitively correct. Firstly, when the Central Bank pays attention essentially to inflation targeting, the inflation rate has a lower mean and is less volatile; secondly, when the degree of price stickiness is high, the inflation rate displays a larger mean and higher volatility (but this is sensitive to the values given to the parameters of the model); and thirdly, the higher the target value of the output gap chosen by the Central Bank, the higher is the inflation rate and its volatility.  相似文献   

8.
Xiujing Han 《Physics letters. A》2009,373(40):3643-3649
By employing a special feedback controlling scheme, a hyperchaotic Lorenz system with the structure of two time scales is constructed. Two kinds of bursting phenomena, symmetric fold/fold bursting and symmetric sub-Hopf/sub-Hopf bursting, can be observed in this system. Their respective dynamical behaviors are investigated by means of slow-fast analysis. In particular, symmetric fold/fold bursting is of focus-focus type, namely, both the up-state and the down-state are stable focus, which is different from the usual fold/fold bursting; Symmetric sub-Hopf/sub-Hopf bursting is also of focus-focus type, which has not been reported in previous work. Furthermore, phase plane analysis has been introduced to explore the evolution details of the fast subsystem for symmetric sub-Hopf/sub-Hopf bursting. With the variation of the parameter, symmetric sub-Hopf/sub-Hopf bursting can evolve to symmetric chaotic bursting or even hyperchaos.  相似文献   

9.
We study three critical curves in a quasiperiodically driven system with time delays, where occurrence of symmetry-breaking and symmetry-recovering phenomena can be observed. Typical dynamical tongues involving strange nonchaotic attractors (SNAs) can be distinguished. A striking phenomenon that can be discovered is multistability and coexisting attractors in some tongues surrounding by critical curves. The blowout bifurcation accompanying with on-off intermittency can also be observed. We show that collision of attractors at a symmetric invariant subspace can lead to the appearance of symmetry-breaking.  相似文献   

10.
We discuss strange nonchaotic attractors (SNAs) in addition to chaotic and regular attractors in a quasiperiodically driven system with time delays. A route and the associated mechanism are described for a special type of attractor called strange-nonchaotic-attractor-like (SNA-like) through T2 torus bifurcation. The type of attractor can be observed in large parameter domains and it is easily mistaken for a true SNA judging merely from the phase portrait, power spectrum and the largest Lyapunov exponent. SNA-like attractor is not strange and has no phase sensitivity. Conditions for Neimark-Sacker bifurcation are obtained by theoretical analysis for the unforced system. Complicated and interesting dynamical transitions are investigated among the different tongues.  相似文献   

11.
A variety of different dynamical regimes involving strange nonchaotic attractors (SNAs) can be observed in a quasiperiodically forced delayed system. We describe some numerical experiments giving evidences of intertwined basin boundaries (smooth, non-Wada fractal and Wada property) for SNAs. In particular, we show that Wada property, fractality and smoothness can be intertwined on arbitrarily fine scales. This suggests that SNAs can exhibit the final state sensitivity and unpredictable behaviors. An interesting dynamical transition of SNAs together with associated mechanisms from non-Wada fractal to Wada intertwined basin boundaries is examined. A scaling exponent is used to characterize the intertwined basin boundaries.  相似文献   

12.
The purpose of this Letter is to show how a border-collision bifurcation in a piecewise-smooth dynamical system can produce a direct transition from a stable equilibrium point to a two-dimensional invariant torus. Considering a system of nonautonomous differential equations describing the behavior of a power electronic DC/DC converter, we first determine the chart of dynamical modes and show that there is a region of parameter space in which the system has a single stable equilibrium point. Under variation of the parameters, this equilibrium may collide with a discontinuity boundary between two smooth regions in phase space. When this happens, one can observe a number of different bifurcation scenarios. One scenario is the continuous transformation of the stable equilibrium into a stable period-1 cycle. Another is the transformation of the stable equilibrium into an unstable period-1 cycle with complex conjugate multipliers, and the associated formation of a two-dimensional (ergodic or resonant) torus.  相似文献   

13.
A new chaotic attractor is presented with only five terms in three simple differential equations having fewer terms and simpler than those of existing seven-term or six-term chaotic attractors. Basic dynamical properties of the new attractor are demonstrated in terms of equilibria, Jacobian matrices, non-generalized Lorenz systems, Lyapunov exponents, a dissipative system, a chaotic waveform in time domain, a continuous frequency spectrum, Poincaré maps, bifurcations and forming mechanisms of its compound structures.  相似文献   

14.
Some scaling properties for a classical particle confined to bounce between two walls, where one wall is fixed and the other one moves in time according to a random signal with a memory length are studied. We have considered two different kinds of collisions of the particle with the moving wall namely: (i) elastic and (ii) inelastic. The dynamics of the model is described in terms of a two-dimensional nonlinear mapping. For the case of elastic collisions, we show that the memory of the stochastic signal affects directly the behaviour of the average velocity of the particle. It then exhibits different slopes for the average velocity at different stages of the series with β≅3/4 for a short time, β≅1 for the average stage and β≅1/2 for a long time, as predicted by the Central Limit Theorem, therefore leading to the Fermi acceleration. The situation where inelastic collisions are taken into account yields a more drastic change, particularly suppressing the Fermi acceleration.  相似文献   

15.
This Letter proposes a novel three-dimensional autonomous system which has complex chaotic dynamics behaviors and gives analysis of novel system. More importantly, the novel system can generate three-layer chaotic attractor, four-layer chaotic attractor, five-layer chaotic attractor, multilayer chaotic attractor by choosing different parameters and initial condition. We analyze the new system by means of phase portraits, Lyapunov exponent spectrum, fractional dimension, bifurcation diagram and Poincaré maps of the system. The three-dimensional autonomous system is totally different from the well-known systems in previous work. The new multilayer chaotic attractors are also worth causing attention.  相似文献   

16.
Sara Dadras 《Physics letters. A》2009,373(40):3637-3642
In this Letter a novel three-dimensional autonomous chaotic system is proposed. Of particular interest is that this novel system can generate two, three and four-scroll chaotic attractors with variation of a single parameter. By applying either analytical or numerical methods, basic properties of the system, such as dynamical behaviors (time history and phase diagrams), Poincaré mapping, bifurcation diagram and Lyapunov exponents are investigated to observe chaotic motions. The obtained results clearly show that this is a new chaotic system which deserves further detailed investigation.  相似文献   

17.
This Letter presents a new three-dimensional autonomous system with four quadratic terms. The system with five equilibrium points has complex chaotic dynamics behaviors. It can generate many different single chaotic attractors and double coexisting chaotic attractors over a large range of parameters. We observe that these chaotic attractors were rarely reported in previous work. The complex dynamical behaviors of the system are further investigated by means of phase portraits, Lyapunov exponents spectrum, Lyapunov dimension, dissipativeness of system, bifurcation diagram and Poincaré map. The physical circuit experimental results of the chaotic attractors show agreement with numerical simulations. More importantly, the analysis of frequency spectrum shows that the novel system has a broad frequency bandwidth, which is very desirable for engineering applications such as secure communications.  相似文献   

18.
A model of nonlinear resonance as a periodically perturbed pendulum is considered, and a new method of analytical estimating the width of a chaotic layer near the separatrices of the resonance is derived for the case of slow perturbation (the case of adiabatic chaos). The method turns out to be successful not only in the case of adiabatic chaos, but in the case of intermediate perturbation frequencies as well.  相似文献   

19.
We investigate a unified chaotic system and its synchronization including feedback synchronization and adaptive synchronization by numerical simulations. We propose a new dynamical quantity denoted by K, which connects adaptive synchronization and feedback synchronization, to analyze synchronization schemes. We find that K can estimate the smallest coupling strength for a unified chaotic system whether it is complete feedback or one-sided feedback. Based on the previous work, we also give a new dynamical method to compute the leading Lyapunov exponent.  相似文献   

20.
We investigate numerically the chaotic sea of the complete Fermi-Ulam model (FUM) and of its simplified version (SFUM). We perform a scaling analysis near the integrable to non-integrable transition to describe the average energy as function of time t and as function of iteration (or collision) number n. When t is employed as independent variable, the exponents of FUM and SFUM are different. However, when n is used, the exponents are the same for both FUM and SFUM. In the collision number analysis, we present analytical arguments supporting the values of the exponents related to the control paramenter and to the initial velocity. We describe also how the scaling exponents obtained by using t as independent variable are related to the ones obtained with n. In contrast to SFUM, the average energy in FUM saturates for long times. We discuss the origin of the observed differences and similarities between FUM and its simplified version.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号