首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 259 毫秒
1.
A novel 4,4′‐sulfonyldianiline‐bridged bis(β‐cyclodextrin (CD)) 2 was synthesized, and its complex stability constants (Ks) for the 1 : 1 inclusion complexation with bile salts, i.e., cholate (CA), deoxycholate (DCA), glycocholate (GCA), and taurocholate (TCA) have been determined in phosphate buffer (pH 7.2) at 25° by fluorescence spectroscopy. The result indicated that 2 can act as efficient fluorescent sensor and display remarkable fluorescence enhancement upon addition of optically inert bile salts. Structures of the inclusion complexes between bile salts and 2 were elucidated by 2D‐NMR experiments, indicating that the anionic tail group and the D ring of bile salts penetrate into one CD cavity of 2 from the wide opening deeply, while the phenyl moiety of the CD linker is partially self‐included in the other CD cavity to form a host–linker–guest binding mode. As compared with native β‐CD 1 upon complexation with bile salts, bis(β‐CD) 2 enhances the binding ability and molecular selectivity. Typically, 2 gives the highest Ks value of 26200 M ?1 for the complexation with CA, which may be ascribed to the simultaneous contributions of hydrophobic, H‐bond, and electrostatic interactions. These phenomena are discussed from the viewpoints of multiple recognition and induce‐fit interactions between host and guest.  相似文献   

2.
Novel functional polymers utilizing specific host/guest interactions were designed by introducing α‐CD host molecules into poly(ε‐lysine) chains as side groups. An interesting phase separation was observed as a result of the inclusion complexation between the polymeric host and 3‐(trimethylsilyl)propionic acid as a model guest in aqueous media. This water‐soluble polymeric host would be useful for various applications, particularly drug delivery, due to its biodegradability, low toxicity, and unique functionality represented as a complexation‐induced phase separation.  相似文献   

3.
The outstanding complexing properties of tetraphosphonate cavitands towards N‐methylpyridinium salts were exploited to realise a new class of linear and cyclic AABB supramolecular polymers through host–guest interactions. The effectiveness of the selected self‐association processes was tested by 1H NMR studies, whereas microcalorimetric analyses clarified the binding thermodynamics and revealed the possibility of tuning entropic contributions by acting on the flexibility of the guest linker. Although the formation of linear polymeric chains for a rigid system was demonstrated by X‐ray analysis, the presence of a concentration‐dependent ring–chain equilibrium was indicated by solution viscosity measurements in the case of a very flexible ditopic BB guest co‐monomer.  相似文献   

4.
X‐ray/neutron (X/N) diffraction data measured at very low temperature (15 K) in conjunction with ab initio theoretical calculations were used to model the crystal charge density (CD) of the host–guest complex of hydroquinone (HQ) and acetonitrile. Due to pseudosymmetry, information about the ordering of the acetonitrile molecules within the HQ cavities is present only in almost extinct, very weak diffraction data, which cannot be measured with sufficient accuracy even by using the brightest X‐ray and neutron sources available, and the CD model of the guest molecule was ultimately based on theoretical calculations. On the other hand, the CD of the HQ host structure is well determined by the experimental data. The neutron diffraction data provide hydrogen anisotropic thermal parameters and positions, which are important to obtain a reliable CD for this light‐atom‐only crystal. Atomic displacement parameters obtained independently from the X‐ray and neutron diffraction data show excellent agreement with a |ΔU| value of 0.00058 Å2 indicating outstanding data quality. The CD and especially the derived electrostatic properties clearly reveal increased polarization of the HQ molecules in the host–guest complex compared with the HQ molecules in the empty HQ apohost crystal structure. It was found that the origin of the increased polarization is inclusion of the acetonitrile molecule, whereas the change in geometry of the HQ host structure following inclusion of the guest has very little effect on the electrostatic potential. The fact that guest inclusion has a profound effect on the electrostatic potential suggests that nonpolarizable force fields may be unsuitable for molecular dynamics simulations of host–guest interaction (e.g., in protein–drug complexes), at least for polar molecules.  相似文献   

5.
A methodology for preparing supramolecular hydrogels from guest‐modified cyclodextrins (CDs) based on the host–guest and hydrogen‐bonding interactions of CDs is presented. Four types of modified CDs were synthesized to understand better the gelation mechanism. The 2D ROESY NMR spectrum of β‐CD‐AmTNB (Am=amino, TNB=trinitrobenzene) reveals that the TNB group was included in the β‐CD cavity. Pulsed field gradient NMR (PFG NMR) spectroscopy and AFM show that β‐CD‐AmTNB formed a supramolecular polymer in aqueous solution through head‐to‐tail stacking. Although β‐CD‐AmTNB did not produce a hydrogel due to insufficient growth of supramolecular polymers, β‐CD‐CiAmTNB (Ci=cinnamoyl) formed supramolecular fibrils through host–guest interactions. Hydrogen bonds between the cross‐linked fibrils resulted in the hydrogel, which displayed excellent chemical‐responsive properties. Gel‐to‐sol transitions occurred by adding 1‐adamantane carboxylic acid (AdCA) or urea. 1H NMR and induced circular dichroism (ICD) spectra reveal that AdCA released the guest parts from the CD cavity and that urea acts as a denaturing agent to break the hydrogen bonds between CDs. The hydrogel was also destroyed by adding β‐CD, which acts as the competitive host to reduce the fibrils. Furthermore, the gel changed to a sol by adding methyl orange (MO) as a guest compound, but the gel reappeared upon addition of α‐CD, which is a stronger host for MO.  相似文献   

6.
Host–guest interactions between α‐, β‐ and γ‐cyclodextrins and vanadocene dichloride (Cp2VCl2) have been investigated by a combination of thermogravimetric analysis, differential scanning calorimetry, powder X‐ray diffraction and solid‐state and solution electron paramagnetic resonance (EPR) spectroscopy. The solid‐state results demonstrated that only β‐ and γ‐cyclodextrins form 1:1 inclusion complexes, while α‐cyclodextrin does not form an inclusion complex with Cp2VCl2. The β‐ and γ‐CD–Cp2VCl2 inclusion complexes exhibited anisotropic electron‐51V (I = 7/2) hyperfine coupling constants whereas the α‐CD–Cp2VCl2 system showed only an asymmetric peak with no anisotropic hyperfine constant. On the other hand, solution EPR spectroscopy showed that α‐cyclodextrin (α‐CD) may be involved in weak host–guest interactions in equilibrium with free vanadocene species. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
The synthesis and characterisation of a novel isomeric family of closo‐carborane‐containing PtII complexes ((R/S)‐( 1 – 4 )?2 NO3) are reported. Related complexes ( 5 ?NO3 and 6 ?NO3) that contain the 7,8‐nido‐carborane cluster were obtained from the selective deboronation of the 1,2‐closo‐carborane analogues. The corresponding water‐soluble supramolecular 1:1 host–guest β‐cyclodextrin (β‐CD) adducts ((R/S)‐( 1 – 4 ) ? β‐CD?2 NO3) were also prepared and fully characterised. HR‐ESI‐MS experiments confirmed the presence of the host–guest adducts, and 2D‐1H{11B} ROESY NMR studies showed that the boron clusters enter the β‐CD from the side of the wider annulus. Isothermal titration calorimetry (ITC) experiments revealed enthalpically driven 1:1 and higher‐order supramolecular interactions between β‐CD and (R/S)‐( 1 – 4 )?2 NO3 in aqueous solution. A comparison of the predominate 1:1 binding mode established that the affinity of β‐CD for the guest molecule is mainly influenced by the pyridyl ring substitution pattern and chirality of the host, whilst the nature of the closo‐carborane isomer also plays some role, with the most favourable structural features for β‐CD binding being the presence of the 4‐pyridyl ring, 1,12‐closo‐carborane, and an S configuration. The results reported here represent the first comprehensive calorimetric study of the supramolecular interactions between closo‐carborane compounds and β‐CD, and it provides fascinating insights into the structural features influencing the thermodynamics of this phenomenon.  相似文献   

8.
The structures of the inclusion compounds 4,4′‐(cyclohexane‐1,1‐diyl)diphenol–3‐chlorophenol (1/1) and 4,4′‐(cyclohexane‐1,1‐diyl)diphenol–4‐chlorophenol (1/1), both C18H20O2·C6H5ClO, are isostructural with respect to the host molecule and are stabilized by extensive host–host, host–guest and guest–host hydrogen bonding. The packing is characterized by layers of host and guest molecules. The kinetics of thermal decomposition follow the R2 contracting‐area model, kt = [1 − (1 − α)½], and yield activation energies of 105 (8) and 96 (8) kJ mol−1, respectively.  相似文献   

9.
As the host possessing the largest cavity in the cucurbit[n]uril (CB[n]) family, CB[10] has previously displayed unusual recognition and assembly properties with guests but much remains to be explored. Herein, we present the recognition properties of CB[10] toward a series of bipyridinium guests including the tetracationic cyclophane known as blue box along with electron‐rich guests and detail the influence of encapsulation on the charge‐transfer interactions between guests. For the mono‐bipyridinium guest (methylviologen, MV 2+), CB[10] not only forms 1:1 and 1:2 inclusion complexes, but also enhances the charge‐transfer interactions between methylviologen and dihydroxynaphthalene ( HN ) by mainly forming the 1:2:1 packed “sandwich” complex (CB[10] ? 2 MV 2+ ?HN ). For guest 1 with two bipyridinium units, an interesting conformational switching from linear to “U” shape is observed by adding catechol to the solution of CB[10] and the guest. For the tetracationic cyclophane‐blue box, CB[10] forms a stable 1:1 inclusion complex; the two bipyridinium units tilt inside the cavity of CB[10] according to the X‐ray crystal structure. Finally, a supramolecular “Russian doll” was built up by threading a guest through the cavities of both blue box and CB[10].  相似文献   

10.
The controlled secondary self‐assembly of amphiphilic molecules in solution is theoretically and practically significant in amphiphilic molecular applications. An amphiphilic β‐cyclodextrin (β‐CD) dimer, namely LA‐(CD)2, has been synthesized, wherein one lithocholic acid (LA) unit is hydrophobic and two β‐CD units are hydrophilic. In an aqueous solution at room temperature, LA‐(CD)2 self‐assembles into spherical micelles without ultrasonication. The primary micelles dissociates and then secondarily form self‐assemblies with branched structures under ultrasonication. The branched aggregates revert to primary micelles at high temperature. The ultrasound‐driven secondary self‐assembly is confirmed by transmission electron microscopy, dynamic light scattering, 1H NMR spectroscopy, and Cu2+‐responsive experiments. Furthermore, 2D NOESY NMR and UV/Vis spectroscopy results indicate that the formation of the primary micelles is driven by hydrophilic–hydrophobic interactions, whereas host–guest interactions promote the formation of the secondary assemblies. Additionally, ultrasonication is shown to be able to effectively destroy the primary hydrophilic–hydrophobic balances while enhancing the host–guest interaction between the LA and β‐CD moieties at room temperature.  相似文献   

11.
The photophysical properties of 7‐(diethylamino) coumarin‐3‐carboxylic acid (7‐DCCA) were studied in cyclodextrins (α, β, γ,‐CDs), different neat solvents and solvent mixtures by using steady state absorption, emission and time‐resolved fluorescence spectroscopy. We have observed that with gradual increase in concentration of β‐CD the fluorescence quantum yield and lifetime decreased in a regular pattern whereas with gradual increase in concentration of γ‐CD the fluorescence quantum yield and lifetime gradually increased. With addition of urea, the fluorescence quantum yield and lifetime of 7‐DCCA in CDs increased. Binding constant calculation shows that 7‐DDCA forms 1:1 complex with β‐CD and with γ‐CD it forms 1:1 and 1:2 (guest:host) inclusion complex. We proposed that the dye molecule formed capping complex with β‐CD by means of hydrogen bonding and after addition of urea the hydrogen bonding network broke down and part of dye molecule entered inside the cavity of β‐CD. The photophysics of 7‐DCCA was studied in dioxane‐water mixture and ethylene glycol‐acetonitrile mixture to know the effect of polarity and viscosity of the media. The photophysics of 7‐DCCA was also studied in different neat solvents. It was found that the photophysics of 7‐DCCA depended on the structural feature of the solvents and solvent mixtures.  相似文献   

12.
By simple ligand exchange of the cationic transition‐metal complexes [(Cp*)M(acetone)3](OTf)2 (Cp*=pentamethylcyclopentadienyl and M=Ir or Rh) with pillar[5]arene, mono‐ and polynuclear pillar[5]arenes, a new class of metalated host molecules, is prepared. Single‐crystal X‐ray analysis shows that the charged transition‐metal cations are directly bound to the outer π‐surface of aromatic rings of pillar[5]arene. One of the triflate anions is deeply embedded within the cavity of the trinuclear pillar[5]arenes, which is different to the host–guest behavior of most pillar[5]arenes. DFT calculation of the electrostatic potential revealed that the metalated pillar[5]arenes featured an electron‐deficient cavity due to the presence of the electron‐withdrawing transition metals, thus allowing encapsulation of electron‐rich guests mainly driven by anion–π interactions.  相似文献   

13.
We report the synthesis and characterization of a three‐dimensional tetraphenylethene‐based octacationic cage that shows host–guest recognition of polycyclic aromatic hydrocarbons (e.g. coronene) in organic media and water‐soluble dyes (e.g. sulforhodamine 101) in aqueous media through CH???π, π–π, and/or electrostatic interactions. The cage?coronene exhibits a cuboid internal cavity with a size of approximately 17.2×11.0×6.96 Å3 and a “hamburger”‐type host–guest complex, which is hierarchically stacked into 1D nanotubes and a 3D supramolecular framework. The free cage possesses a similar cavity in the crystalline state. Furthermore, a host–guest complex formed between the octacationic cage and sulforhodamine 101 had a higher absolute quantum yield (ΦF=28.5 %), larger excitation–emission gap (Δλex‐em=211 nm), and longer emission lifetime (τ=7.0 ns) as compared to the guest (ΦF=10.5 %; Δλex‐em=11 nm; τ=4.9 ns), and purer emission (ΔλFWHM=38 nm) as compared to the host (ΔλFWHM=111 nm).  相似文献   

14.
The title compound, C44H54N2O8·4H2O, has twofold crystallographic symmetry and consists of a calix­[4]­arene moiety with four phenyl rings arranged alternately in anti‐orientation fashion and two aza­crown units attached on the lower rims of calix­[4]­arene. This seems to offer a big cavity inside the mol­ecule which might possess a potential for forming host–guest complexes.  相似文献   

15.
To provide improved understanding of guest–host interactions in clathrate hydrates, we present some correlations between guest chemical structures and observations on the corresponding hydrate properties. From these correlations it is clear that directional interactions such as hydrogen bonding between guest and host are likely, although these have been ignored to greater or lesser degrees because there has been no direct structural evidence for such interactions. For the first time, single‐crystal X‐ray crystallography has been used to detect guest–host hydrogen bonding in structure II (sII) and structure H (sH) clathrate hydrates. The clathrates studied are the tert‐butylamine (tBA) sII clathrate with H2S/Xe help gases and the pinacolone + H2S binary sH clathrate. X‐ray structural analysis shows that the tBA nitrogen atom lies at a distance of 2.64 Å from the closest clathrate hydrate water oxygen atom, whereas the pinacolone oxygen atom is determined to lie at a distance of 2.96 Å from the closest water oxygen atom. These distances are compatible with guest–water hydrogen bonding. Results of molecular dynamics simulations on these systems are consistent with the X‐ray crystallographic observations. The tBA guest shows long‐lived guest–host hydrogen bonding with the nitrogen atom tethered to a water HO group that rotates towards the cage center to face the guest nitrogen atom. Pinacolone forms thermally activated guest–host hydrogen bonds with the lattice water molecules; these have been studied for temperatures in the range of 100–250 K. Guest–host hydrogen bonding leads to the formation of Bjerrum L‐defects in the clathrate water lattice between two adjacent water molecules, and these are implicated in the stabilities of the hydrate lattices, the water dynamics, and the dielectric properties. The reported stable hydrogen‐bonded guest–host structures also tend to blur the longstanding distinction between true clathrates and semiclathrates.  相似文献   

16.
A calix[4]arene host equipped with two bis‐[Zn(salphen)] complexes self‐assembles into a capsular complex in the presence of a chiral diamine guest with an unexpected 2:1 ratio between the host and the guest. Effective chirality transfer from the diamine to the calix–salen hybrid host is observed by circular dichroism (CD) spectroscopy, and a high stability constant K2,1 of 1.59×1011 M ?2 for the assembled host–guest ensemble has been determined with a substantial cooperativity factor α of 6.4. Density functional calculations are used to investigate the origin of the stability of the host–guest system and the experimental CD spectrum compared with those calculated for both possible diastereoisomers showing that the M,M isomer is the one that is preferentially formed. The current system holds promise for the chirality determination of diamines, as evidenced by the investigated substrate scope and the linear relationship between the ee of the diamine and the amplitude of the observed Cotton effects.  相似文献   

17.
A new calix­[4]‐­crowned aza­crown ether, C51H59NO11S, consisting of four phenyl rings in a 1,3‐alternate conformation was synthesized from the reaction of 25,27‐bis(5‐chloro‐3‐oxa­pentyl­oxy)­calix­[4]­crown‐5 and p‐toluene­sulfon­amide in the presence of Cs2CO3. A crown‐5 loop was attached on the two facing lower rims of the calix­[4]­arene and the N‐tosyl aza­crown group was attached on the other set of lower rims of the calix­[4]­arene backbone. This mol­ecule seems to offer an inside cavity for the formation of a host–guest complex.  相似文献   

18.
Aqueous solutions containing simple model aliphatic and alicyclic carboxylic acids (surrogates 1–4) were studied using negative ion electrospray mass spectrometry (ESI‐MS) in the presence and absence of α‐, β‐, and γ‐cyclodextrin. Molecular ions were detected corresponding to the parent carboxylic acids and complexed forms of the carboxylic acids; the latter corresponding to non‐covalent inclusion complexes formed between carboxylic acid and cyclodextrin compounds (e.g., β‐CD, α‐CD, and γ‐CD). The formation of 1:1 non‐covalent inclusion cyclodextrin‐carboxylic complexes and non‐inclusion forms of the cellobiose‐carboxylic acid compounds was also observed. Aqueous solutions of Syncrude‐derived mixtures of aliphatic and alicyclic carboxylic acids (i.e. naphthenic acids; NAs) were similarly studied using ESI‐MS, as outlined above. Molecular ions corresponding to the formation of CD‐NAs inclusion complexes were observed whereas 1:1 non‐inclusion forms of the cellobiose‐NAs complexes were not detected. The ESI‐MS results provide evidence for some measure of inclusion selectivity according to the 'size‐fit' of the host and guest molecules (according to carbon number) and the hydrogen deficiency (z‐series) of the naphthenic acid compounds. The relative abundances of the molecular ions of the CD‐carboxylate anion adducts provide strong support for differing complex stability in aqueous solution. In general, the 1:1 complex stability according to hydrogen deficiency (z‐series) of naphthenic acids may be attributed to the nature of the cavity size of the cyclodextrin host compounds and the relative lipophilicity of the guest. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
A biodegradable diblock copolymer of poly(ϵ‐caprolactone) (PCL) and poly(L ‐lactide) (PLLA) was synthesized and characterized. The inclusion compound (IC) of this copolymer with α‐cyclodextrin (α‐CD) was formed and characterized. Wide‐angle X‐ray diffraction showed that in the IC crystals α‐CDs were packed in the channel mode, which isolated and restricted the individual guest copolymer chains to highly extended conformation. Solid‐state 13C NMR techniques were used to investigate the morphology and dynamics of both the bulk and α‐CD‐IC isolated PCL‐b‐PLLA chains. The conformation of the PCL blocks isolated within the α‐CD cavities was similar to the crystalline conformation of PCL blocks in the bulk copolymer. Spin–lattice relaxation time (T1C) measurements revealed a dramatic difference in the mobilities of the semicrystalline bulk copolymer chains and those isolated in the α‐CD‐IC channels. Carbon‐observed proton spin–lattice relaxation in the rotating frame measurements (TH) showed that the bulk copolymer was phase‐separated, while, in the IC, exchange of proton magnetization through spin‐diffusion between the isolated guest polymer chains and the host α‐CD was not complete. The two‐dimensional solid‐state heteronuclear correlation (HetCor) method was also employed to monitor proton communication in these samples. Intrablock exchange of proton magnetization was observed in both the bulk semicrystalline and IC copolymer samples at short mixing times; however, even at the longest mixing time, interblock proton communication was not observed in either sample. In spite of the physical closeness between the isolated included guest chains and the host α‐CD molecules, efficient proton spin diffusion was not observed between them in the IC. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2086–2096, 2005  相似文献   

20.
Based on the competitive host–guest interaction between a β‐cyclodextrin/poly(N‐acetylaniline)/electrogenerated‐graphene (β‐CD/PNAANI/EG) film and probe or target molecules, a new dual‐signalling electrochemical sensing method has been developed for the sensitive and selective determination of organic pollutants. As a model system, rhodamine B (RhB) and 1‐aminopyrene (1‐AP) were adopted as the probe and target molecules, respectively. Due to the host–guest interaction, RhB molecules can enter into the hydrophobic inner cavity of β‐CD, and the β‐CD/PNAANI/EG‐modified glassy carbon electrode displays a remarkable oxidation peak due to RhB. In the presence of 1‐AP, competitive association to β‐CD occurs and the RhB molecules are displaced by 1‐AP. This results in a decreased oxidation peak current of RhB and the appearance of an oxidation peak current for 1‐AP, and the changes of these signals correlate linearly with the concentration of 1‐AP. When the value ΔI1‐AP+∣ΔIRhB∣ (ΔI1‐AP and ΔIRhB are the change values of the oxidation peak currents of 1‐AP and RhB, respectively) is used as the response signal to quantitatively determine the concentration of 1‐AP, the detection limit is much lower than that given by using ΔI1‐AP or ΔIRhB as the response signal. This dual‐signalling sensor can provide more sensitive target recognition and will have important applications in the sensitive and selective electrochemical determination of electroactive organic pollutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号