首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An electrothermal atomic absorption spectrometric method (ET-AAS) was developed for the direct determination of iron in intestinal Caco-2 cells after studying cell viability and proliferation using 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium bromide (MTT test). Zeeman background correction and end-capped graphite tubes with Lvov platforms were used. Samples were dissolved in dimethylsulfoxide (DMSO) and pipetted directly into the graphite tube. The preashing, pretreatment and atomization steps were optimized. The temperatures selected were 600, 1200, and 2100 °C, respectively. Stability measurements were performed using iron standard solutions in DMSO on the one hand and acidified cell solutions on the other. Direct measurement and standard addition were compared in order to determine possible influences of the matrix. The low detection limit of the ET-AAS method (1.3 g/L or 3.3 g/g) combined with the small sample quantities required are ideal for the determination of iron in cells due to the low iron content and the limited growth area of the cells. The method was developed for iron uptake studies for toxicological purposes.  相似文献   

2.
Communication between cells by release of specific chemical messengers via exocytosis plays crucial roles in biological process. Electrochemical detection based on ultramicroelectrodes (UMEs) has become one of the most powerful techniques in real-time monitoring of an extremely small number of released molecules during very short time scales, owing to its intrinsic advantages such as fast response, excellent sensitivity, and high spatiotemporal resolution. Great successes have been achieved in the use of UME methods to obtain quantitative and kinetic information about released chemical messengers and to reveal the molecular mechanism in vesicular exocytosis. In this paper, we review recent developments in monitoring exocytosis by use of UMEs-electrochemical-based techniques including electrochemical detection using micrometer and nanometer-sized sensors, scanning electrochemical microscopy (SECM), and UMEs implemented in lab-on-a-chip (LOC) microsystems. These advances are of great significance in obtaining a better understanding of vesicular exocytosis and chemical communications between cells, and will facilitate developments in many fields, including analytical chemistry, biological science, and medicine. Furthermore, future developments in electrochemical probing of exocytosis are also proposed. Figure In this paper, we review recent developments in monitoring the exocytosis by use of UMEs-electrochemical-based techniques including electrochemical detection using micrometer and nanometer-sized sensors, Scanning Electrochemical Microscopy (SECM) and UMEs implemented in lab-on-a-chip (LOC) microsystems. These advances are of great significance in obtaining a better understanding of vesicular exocytosis and chemical communications between cells, and will facilitate developments in many fields including analytical chemistry, biological science and medicine. Furthermore, future developments in electrochemical probing of exocytosis are proposed.
Wei-Hua HuangEmail:
  相似文献   

3.
Polymer/nanoparticle composite films are receiving growing attention thanks to their potential for application in ultra-thin electronic and optical devices. Polymer blend demixing has been shown to be a suitable technique for the structuring of polymer thin films and the patterning of nanoparticles (NP) within them. In this work we show that the morphology of thin polymer films made by spin-casting a polymer blend solution containing NP fillers on a surface depends strongly on the concentration of NP fillers. More specifically, polystyrene/polymethylmethacrylate (PS/PMMA) films formed from a toluene solution, and which demix following a nucleation and growth mechanism, were studied. It was found that both the height and the surface density of PMMA domains increased as the concentration of CoPt:Cu NPs in the film was increased. We find that similar effects are induced in a NP-free PS/PMMA demixed film upon increasing the molecular weight of the PS molecules. This suggests that under certain conditions the NPs and the polymer molecules in the blend do not behave as separate species but form aggregates.  相似文献   

4.
The apparent electrocatalytic detection of aspirin and salicylic acid is compared using NiO nanoparticles and microparticles supported on graphitic electrodes using abrasive and non-abrasive (drop-dry) immobilisation. However control experiments revealed that, the observed voltammetry is not due to the immobilised NiO materials, but is instead due to the underlying graphitic substrates. Abrasive immobilisation of NiO microparticles on a graphite electrode abrades the underlying electrode surface, introducing more electroactive edge-plane defects. Even when drop-dry immobilisation is used (i.e. non-abrasive), appropriate control experiments are still required as other experimental methods employed may change the nature of the underlying substrate.  相似文献   

5.
CdS and ZnS nanoparticles were prepared in the solid–liquid interfacial adsorption layer as a nanophase reactor. The substrates were hydrophilic and hydrophobic aerosils and hydrophilic layer silicates dispersed in ethanol–cyclohexane mixtures. The growth of particles at various surface concentration of precursor ions was monitored by absorption spectroscopy, band-gap-energy measurements and particle diameter measurements. Also, the rheological properties of nanoparticle–support composites in organic and aqueous dispersions were measured. The energy of separation between the nanoparticles depended on the particle diameter. The intercalation of nanoparticles in the layered silicates yielded a nanostructured two-phase system. The presence of semiconductive subcolloids was proven by transmission electron microscopy measurements, which offer an excellent possibility for the determination of the particle size distribution. Received: 20 July 1999/Accepted in revised form: 22 September 1999  相似文献   

6.
Zhang L  Qu F  Hu M  Ding J  Lou B 《Electrophoresis》2012,33(5):834-840
A capillary zone electrophoresis-based method to evaluate the cytotoxicity of substances to Caco-2 cells was established. The estimation of the injected cell number (500-5000) and the minor effect of injection condition on cytotoxicity determination were investigated. Caco-2 cells the best model of the intestinal absorptive epithelium, were treated with substances and then stained with Trypan Blue and fixed with paraformaldehyde. The treated Caco-2 cells were detected simultaneously at 590 nm and 214 nm, and the absorbance ratio of the two wavelengths (R(590/214)) can reflect simultaneously the loss of cell membrane integrity and the degradation/leak of intracellular components and indicate the cytotoxicity of substances. The cytotoxicity of the four substances sodium sulfite (Na(2)SO(3)), methyl mercury (MeHg), paclitaxel (PTX), and cadmium chloride (CdCl(2)) were determined and compared. There was no obvious cytotoxicity caused by 20 μM Na(2)SO(3) for 24 h treatment, and the toxicity of the other three toxicants was sequenced as: CdCl(2) > MeHg > PTX. The results are in good agreement with the references and the conventional Trypan Blue exclusion counting assay.  相似文献   

7.
The size of iron oxide nanoparticles, prepared from the thermal decomposition of Fe(CO)(5) in a high boiling solvent in the presence of oleic acid, is affected by water concentration, giving particles from sizes of 5.6 nm to as low as 2.2 nm.  相似文献   

8.
Patterned arrays of gold nanoparticles were fabricated using a simple dipping method that makes use of their specific interactions with nano-domains of carboxylic acid on a block copolymer template. Polystyrene-block-poly(tert-butyl acrylate) on the SU-8 photoresist pattern was selectively transformed to polystyrene-block-poly(acrylic acid). Au nanoparticles are selectively immobilized on the resulting carboxylic acid patterns to produce well-defined patterned Au nanoparticle arrays. This stable and robust template can be used to obtain any patterned nonaggregated metal or inorganic nanoparticle arrays.  相似文献   

9.
Nanoparticles can influence the properties of polymer materials by a variety of mechanisms. With fullerene, carbon nanotube, and clay or graphene sheet nanocomposites in mind, we investigate how particle shape influences the melt shear viscosity η and the tensile strength τ, which we determine via molecular dynamics simulations. Our simulations of compact (icosahedral), tube or rod‐like, and sheet‐like model nanoparticles, all at a volume fraction ? ≈ 0.05, indicate an order of magnitude increase in the viscosity η relative to the pure melt. This finding evidently can not be explained by continuum hydrodynamics and we provide evidence that the η increase in our model nanocomposites has its origin in chain bridging between the nanoparticles. We find that this increase is the largest for the rod‐like nanoparticles and least for the sheet‐like nanoparticles. Curiously, the enhancements of η and τ exhibit opposite trends with increasing chain length N and with particle shape anisotropy. Evidently, the concept of bridging chains alone cannot account for the increase in τ and we suggest that the deformability or flexibility of the sheet nanoparticles contributes to nanocomposite strength and toughness by reducing the relative value of the Poisson ratio of the composite. The molecular dynamics simulations in the present work focus on the reference case where the modification of the melt structure associated with glass‐formation and entanglement interactions should not be an issue. Since many applications require good particle dispersion, we also focus on the case where the polymer‐particle interactions favor nanoparticle dispersion. Our simulations point to a substantial contribution of nanoparticle shape to both mechanical and processing properties of polymer nanocomposites. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1882–1897, 2007  相似文献   

10.
Structure and photoelectrochemical properties of nanostructured SnO2 electrodes deposited electrophoretically with the composite clusters of porphyrin-modified gold nanoparticle with a long, flexible spacer and C60 molecules have been examined to obtain basic information on the development of organic solar cells with a high performance. The photoelectrochemical system with the long, flexible spacer between the porphyrin and the gold nanoparticle in the porphyrin-modified gold nanoparticle exhibited comparable external quantum yield in the UV-vis regions relative to porphyrin-modified gold nanoparticle with a relatively short spacer—C60 composite reference system. These results demonstrate that a suitable spacer to incorporate C60 molecules efficiently between the porphyrins in porphyrin-modified gold nanoparticles is a prerequisite for improving the performance of porphyrin and fullerene-based organic solar cells.  相似文献   

11.
Summary Stationary phases with octadecyl groups have been prepared with different carbon content without and in the presence of water and characterized for their selectivity for the shape of various polyaromatic hydrocarbons. It is shown that both a high hydrocarbon content and a good accessibility of the bonded groups within the pores is required to achieve shape recognition for PAH. High carbon content alone is not sufficient. The two tests for shape selectivity proposed by Sander and Wise as well as by Tanaka are compared. In most cases the results are similar: A low selectivity with the Sander and Wise test (α TBN/BaP<1) corresponds to a high value with the Tanaka test (α TRI/o-TER>3). However, not in all cases the tests give corresponding answers. Further studies on molecular recognition are required.  相似文献   

12.
We present a study of chain interdiffusion in films formed by specially architectured PBMA nanoparticles by Förster Resonance Energy Transfer – FRET. Polymer nanoparticles contained linear chains with narrower molecular weight distributions than other previous reports, allowing a more detailed study. Apparent fractions of mixing and diffusion coefficients, determined from the quantum efficiency of energy transfer, were used to characterize the interdiffusion mechanism in the different films. The resistance of the films to dissolution by a good solvent was finally correlated with the interdiffusion results, in order to get information about film healing. We concluded that whenever interdiffusion occurs between nanoparticles containing linear chains and fully cross-linked nanoparticles, healing becomes more effective in spite of showing slower interdiffusion. We also observed that particles with longer chains are more effective for film healing. Finally, we concluded that interdiffusion occurs both ways across interfaces in blends formed by particles swollen with linear chains of different molecular weights.  相似文献   

13.
采用遗传算法研究了一系列药物分子的Caco-2细胞表观穿透系数(lgPeff)和分子结构之间的关系. 基于51个化合物构成的训练集, 计算得到了一组效果较好的定量构效关系(QSAR)模型. 这些模型不仅具有较好的回归能力, 还能对预测集中的分子进行较好的预测. 在计算得到的精华种群中, 共有4个分子参数具有较高的出现频率, 它们分别是lgD(表观酯水分配系数)、rgyr(回旋半径)、Shadow-Xlength(分子在X维上的投影长度)以及NHBD(氢键给体数目).  相似文献   

14.
Colloidal aqueous solution of zerovalent copper (Cu(0)) nanoparticles were prepared from the Cu2+ ions coordinated with polyethyleniminated polyoxypropylenediamines (D400(EI) x ) followed by chemical reduction of NaBH4. Aqueous solution of copper clusters formed in the presence of D400(EI)8 with a loading ratio of [EI]/[Cu2+] = 3 were stable without precipitation for standing more than 1 month. The protective effects of D400(EI) x and the particle size of the resulted Cu nanoparticle are regulated by the attachments of ethylenimine (EI) groups per polymer backbone and the normality ratio of [EI]/[Cu2+] used. It is found that the more EI-content per polymer backbone results in the smaller particle size and the narrower size dispersity of the colloidal Cu(0) particles, and the average particle size of 5.07 nm with standard deviation of 0.86 nm was obtained in the presence of D400(EI)8 with the ratio of [EI]/[Cu2+] = 3. As the polymer concentration of D400(EI)8 increases (the increase of [EI]/[Cu2+]), the average particle size of the prepared Cu(0) nanoparticle slightly changes, but interestingly, the size dispersity gradually decreases, where the standard deviation for the concentration at [EI]/[Cu2+] = 5 is 0.82 nm approaching that for monodispersed nanoparticles (0.5 nm).  相似文献   

15.
Crystallization of high density polyethylene (PE) from the melt on model atomically flat solid surfaces decorated with micro- and nanoparticles of gold or NaCl of different size and densities is investigated. The morphology of the contact layer of PE after its detachment from the support is studied using atomic force microscopy (AFM). It is shown that the nucleating and ordering effect of the solid on PE crystallization depends to a large extend on the nanostructure of its surface, in particular on the size of the atomically flat domains and on the presence of nanoscopic obstacles. The minimum size of the flat domain which can significantly influence the PE crystallization is estimated to be of the order of 150 nm.  相似文献   

16.
The Caco-2 cells have been recognized as effective tools to be applied to imitate the drug absorption in human intestine for the transport of drug. In this study, Caco-2 cell monolayer model was used to study compatibility of the transport of the Veratrum alkaloids in different proportions with Panax ginseng. A specific ultra-high performance liquid chromatographic-electrospray ionization-mass spectrometric (UPLC-ESI-MS) method is developed for the semi-quantitative determination of Veratrum alkaloids on intestinal transport with berberine as internal standard (IS). In the Caco-2 model constructed, three influencing factors are investigated, including time, concentration and recovery rates of the Veratrum alkaloids during the uptake from AP (apical side) to BL (basolateral side). The results suggest that the flux of Veratrum alkaloids is time dependent and concentration dependent. And the absorption of all eight Veratrum alkaloids increase after compatibility with Panax ginseng compared to the single Veratrum nigrum extraction. This research was studied from the perspective of intestinal absorption by the UPLCESI-MSmethod. Thismethod was successfully applied to transport studies of the Veratrum alkaloids and the interaction mechanism between Veratrum nigrum and Panax ginseng.  相似文献   

17.
Polyurethane block copolymer (PU) was synthesized and was followed by a sol-gel reaction with tetraethoxysilane (TEOS) to prepare high performance polyurethane-silica hybrids with shape memory function. Their tensile and shape memory properties were compared as a function of TEOS content and PU hard segment content. A tensile test showed that the mechanical properties were largely influenced by TEOS content, and the maximum elongation-at-break as well as maximum breaking stress and modulus were obtained when TEOS at 10 wt% was used. Shape memory of hybrids was also obtained from a thermomechanical test, and showed good shape retention and shape recovery of more than 80% for all samples. Consequently, by silica hybridization, an improvement in the mechanical properties and shape recovery force of PU could be achieved without any decrease in their shape recovery effect.  相似文献   

18.
19.
In this study, five microcrystalline cellulose (MCC) grades were physically characterized and their extrusion-spheronization behaviours were characterized in terms of water requirements and pellet shape profiles. It was found that the MCC grades differed significantly in the physical properties investigated. Physical properties of MCC were found to influence the water requirement for extrusion-spheronization. MCC grades of higher bulk densities, lower porosities and water retentive capacities required less water to produce pellets of equivalent size. These MCC grades were also found to produce pellets of lower sphericity and wider shape distributions. Packing of MCC particles within the agglomerate played a role in determining amount of water retention and pellet rounding during spheronization. However, there was a limit to the influence of packing density on the rate of pellet rounding because poor packing resulted in higher water retentive capacity, which also limited the rate of rounding.  相似文献   

20.
Stimuli-controllable shape-shifting polymers, such as shape memory polyurethane (SMPU), are promising for robotics, aerospace, sensing, automobiles, and many other applications. However, slow actuation or high shape recovery time, low recovery stress, and inadequate understanding of friction and wear characteristics of SMPU limit its widespread practical uses. Further, SMPU has been engineered with diverse foreign materials but inconsistent results and ambiguous underlying mechanisms, especially when SMPU is modified with sp2-carbon materials, are also major concerns. Here we determine and simultaneously cross-compare the role of 1D/2D/3D graphitic carbons, namely carbon nanotubes, multilayer graphene and graphite, in controlling the properties of SMPU. The designed SMPU-composites display 8–15-folds faster shape recovery in different mediums, higher recoverable stress, faster healing of the dents, 2–3-folds lower friction, better wear resistance, and improved thermal, wettability, and dielectric properties than pristine SMPU. Further, while the introduction of 2D/3D graphitic carbons massively degrade the elongation, 1D carbon nanotubes maintains the stretchability of SMPU. Eventually, we develop a novel heat alarm device employing SMPU-composite as a major component that acts as a heat sensor, an actuator, and enables the closure of the circuit. Our results uncover many unknown phenomena of engineered SMPU and pave the way for the development of smart-technologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号