首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rate coefficients for the reaction of the hydroxyl radical with CH3OCH2F (HFE‐161) were computed using transition state theory coupled with ab initio methods, viz., MP2, G3MP2, and G3B3 theories in the temperature range of 200–400 K. Structures of the reactants and transition states (TSs) were optimized at MP2(FULL) and B3LYP level of theories with 6‐31G* and 6‐311++G** basis sets. The potential energy surface was scanned at both the level of theories. Five different TSs were identified for each rotamer. Calculations of Intrinsic reaction coordinates were performed to confirm the existence of all the TSs. The kinetic parameters due to all different TSs are reported in this article. The rate coefficients for the title reaction were computed to be k = (9 ± 1.08) × 10?13 exp [?(1,713 ± 33)/T] cm3 molecule?1 s?1 at MP2, k = (7.36 ± 0.42) × 10?13 exp [?(198 ± 16)/T] cm3 molecule?1 s?1 at G3MP2 and k = (5.36 ± 1.57) × 10?13 exp [?(412 ± 81)/T] cm3 molecule?1 s?1 at G3B3 theories. The atmospheric lifetimes of CH3OCH2F at MP2, G3MP2, and G3B3 level of theories were estimated to be 20, 0.1, and 0.3 years, respectively. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

2.
The rate coefficients for the removal of Cl atoms by reaction with three HCFCs, CF3CHCl2 (HCFC-123), CF3CHFCl (HCFC-124), and CH3CFCl2 (HCFC 141b), were measured as a function of temperature between 276 and 397 K. CH3CF2Cl (HCFC-142b) was studied only at 298 K. The Arrhenius expressions obtained are: k1 = (3.94 ± 0.84)× 10?12 exp[?(1740 ± 100)/T] cm3 molecule?1 s?1 for CF3CHCl2 (HCFC 123); k2 = (1.16 ± 0.41) × 10?12 exp[?(1800 ± 150)/T] cm3 molecule?1 s?1 for CF3CHFCl (HCFC 124); and k3 = (1.6 ± 1.1) × 10?12 exp[?(1800 ± 500)/T] cm3 molecule?1 s?1 for CH3CFCl2 (HCFC 141b). In case of HCFC 141b, non-Arrhenius behavior was observed at temperatures above ca. 350 K and is attributed to the thermal decomposition of CH2CFCl2 product into Cl + CH2CFCl. In case of HCFC-142b, only an upper limit for the 298 K value of the rate coefficient was obtained. The atmospheric significance of these results are discussed. © 1993 John Wiley & Sons, Inc.  相似文献   

3.
The rate coefficients of the CHF2CHFCHF2 (HFC‐245ea) + OH reaction were computed using G3B3 theory in the temperature range 200 and 400 K. Geometries were optimized for all reactants, transition states, and products at the B3LYP level of theory using 6‐31G* and 6‐311++G** basis sets. Three rotamers (R1, R2, and R3) of CHF2CHFCHF2 were identified using a potential energy surface scan. Thirteen independent transition states were identified and confirmed by intrinsic reaction coordinate calculations. The kinetic parameters due to all different transition states are presented in this paper. All the three rotamers were taken into account in computing the rate coefficients. Throughout the temperature range of this study, rotamer R3 contributes significantly (more than 90%), whereas the other two rotamers R1 and R2 contribute less to the total rate coefficient. The rate coefficients for the title reaction were computed to be k = (1.86 ± 0.17) × 10?13 exp[?(748±26)/T] cm3 molecule?1s?1 and (1.25 ± 0.23) × 10?13 exp[?(587±50)/T] cm3molecule?1 s?1 with Wigner's and Eckart's unsymmetrical tunneling methods, respectively, and they are in reasonable agreement with the experimentally measured ones. © 2011 Wiley Periodicals, Inc. Int J Chem Kinet 43: 418–430, 2011  相似文献   

4.
The gas‐phase reactions of the NO3 radical with 2‐methylthiophene, 3‐methylthiophene, and 2,5‐dimethylthiophene have been studied, using relative and absolute methods at 298 K. Determination of relative rate was performed using Teflon collapsible bag as the reaction chamber and gas chromatography as the analytical tool. For the absolute method, experiments were carried out using fast‐flow‐discharge technique with detection of NO3 by laser‐induced fluorescence. The temperature dependence was studied by the absolute technique for the reactions of NO3 with 2‐methylthiophene and 3‐methylthiophene in the range 263–335 K. The proposed Arrhenius expressions for the reaction of the nitrate radical with 2‐methylthiophene and 3‐methylthiophene are k = (4 ± 2) × 10?16 exp[?(2200 ± 100)/T]] cm3 molecule?1 s?1 and k = (3 ± 2) × 10?15 exp[?(1700 ± 200)/T]] cm3 molecule?1 s?1, respectively. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 35: 286–293, 2003  相似文献   

5.
The rate coefficient for the gas‐phase reaction of chlorine atoms with acetone was determined as a function of temperature (273–363 K) and pressure (0.002–700 Torr) using complementary absolute and relative rate methods. Absolute rate measurements were performed at the low‐pressure regime (~2 mTorr), employing the very low pressure reactor coupled with quadrupole mass spectrometry (VLPR/QMS) technique. The absolute rate coefficient was given by the Arrhenius expression k(T) = (1.68 ± 0.27) × 10?11 exp[?(608 ± 16)/T] cm3 molecule?1 s?1 and k(298 K) = (2.17 ± 0.19) × 10?12 cm3 molecule?1 s?1. The quoted uncertainties are the 2σ (95% level of confidence), including estimated systematic uncertainties. The hydrogen abstraction pathway leading to HCl was the predominant pathway, whereas the reaction channel of acetyl chloride formation (CH3C(O)Cl) was determined to be less than 0.1%. In addition, relative rate measurements were performed by employing a static thermostated photochemical reactor coupled with FTIR spectroscopy (TPCR/FTIR) technique. The reactions of Cl atoms with CHF2CH2OH (3) and ClCH2CH2Cl (4) were used as reference reactions with k3(T) = (2.61 ± 0.49) × 10?11 exp[?(662 ± 60)/T] and k4(T) = (4.93 ± 0.96) × 10?11 exp[?(1087 ± 68)/T] cm3 molecule?1 s?1, respectively. The relative rate coefficients were independent of pressure over the range 30–700 Torr, and the temperature dependence was given by the expression k(T) = (3.43 ± 0.75) × 10?11 exp[?(830 ± 68)/T] cm3 molecule?1 s?1 and k(298 K) = (2.18 ± 0.03) × 10?12 cm3 molecule?1 s?1. The quoted errors limits (2σ) are at the 95% level of confidence and do not include systematic uncertainties. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 724–734, 2010  相似文献   

6.
The laser photolysis‐laser‐induced fluorescence method was used for measuring the kinetic parameters of the reaction of OH radicals with CF3CH2OCH2CF3 (2,2,2‐trifluoroethyl ether), in the temperature range of 298–365 K. The bimolecular rate coefficient at 298 K, kII(298), was measured to be (1.47 ± 0.03) × 10?13 cm3 molecule?1 s?1, and the temperature dependence of kII was determined to be (4.5 ± 0.8) × 10?12exp [?(1030 ± 60)/T] cm3 molecule?1 s?1. The error quoted is 1σ of the linear regression of the respective plots. The rate coefficient at room temperature is very close to the average of the three previous measurements, whereas the values of Ea/R and the A‐factor are higher than the two previously reported values. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 519–525, 2010  相似文献   

7.
A laser flash photolysis-resonance fluorescence technique has been employed to study the kinetics of reactions (1)–(4) as a function of temperature. In all cases, the concentration of the excess reagent, i.e., HBr or Br2, was measured in situ in the slow flow system by UV-visible photometry. Heterogeneous dark reactions between XBr (X = H or Br) and the photolytic precursors for Cl(2P) and O(3P) (Cl2 and O3, respectively) were avoided by injecting minimal amounts of precursor into the reaction mixture immediately upstream from the reaction zone. The following Arrhenius expressions summarize our results (errors are 2σ and represent precision only, units are cm3 molecule?1 s?1): ??1 = (1.76 ± 0.80) × 10?11 exp[(40 ± 100)/T]; ??2 = (2.40 ± 1.25) × 10?10 exp[?(144 ± 176)/T]; ??3 = (5.11 ± 2.82) × 10?12 exp[?(1450 ± 160)/T]; ??4 = (2.25 ± 0.56) × 10?11 exp[?(400 ± 80)/T]. The consistency (or lack thereof) of our results with those reported in previous kinetics and dynamics studies of reactions (1)–(4) is discussed.  相似文献   

8.
Rate constants for the reactions of OH and NO3 radicals with CH2?CHF (k1 and k4), CH2?CF2 (k2 and k5), and CHF?CF2 (k3 and k6) were determined by means of a relative rate method. The rate constants for OH radical reactions at 253–328 K were k1 = (1.20 ± 0.37) × 10?12 exp[(410 ± 90)/T], k2 = (1.51 ± 0.37) × 10?12 exp[(190 ± 70)/T], and k3 = (2.53 ± 0.60) × 10?12 exp[(340 ± 70)/T] cm3 molecule?1 s?1. The rate constants for NO3 radical reactions at 298 K were k4 = (1.78 ± 0.12) × 10?16 (CH2?CHF), k5 = (1.23 ± 0.02) × 10?16 (CH2?CF2), and k6 = (1.86 ± 0.09) × 10?16 (CHF?CF2) cm3 molecule?1 s?1. The rate constants for O3 reactions with CH2?CHF (k7), CH2?CF2 (k8), and CHF?CF2 (k9) were determined by means of an absolute rate method: k7 = (1.52 ± 0.22) × 10?15 exp[?(2280 ± 40)/T], k8 = (4.91 ± 2.30) × 10?16 exp[?(3360 ± 130)/T], and k9 = (5.70 ± 4.04) × 10?16 exp[?(2580 ± 200)/T] cm3 molecule?1 s?1 at 236–308 K. The errors reported are ±2 standard deviations and represent precision only. The tropospheric lifetimes of CH2?CHF, CH2?CF2, and CHF?CF2 with respect to reaction with OH radicals, NO3 radicals, and O3 were calculated to be 2.3, 4.4, and 1.6 days, respectively. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 619–628, 2010  相似文献   

9.
Using the relative kinetic method, rate coefficients have been determined for the gas‐phase reactions of chlorine atoms with propane, n‐butane, and isobutane at total pressure of 100 Torr and the temperature range of 295–469 K. The Cl2 photolysis (λ = 420 nm) was used to generate Cl atoms in the presence of ethane as the reference compound. The experiments have been carried out using GC product analysis and the following rate constant expressions (in cm3 molecule?1 s?1) have been derived: (7.4 ± 0.2) × 10?11 exp [‐(70 ± 11)/ T], Cl + C3H8 → HCl + CH3CH2CH2; (5.1 ± 0.5) × 10?11 exp [(104 ± 32)/ T], Cl + C3H8 → HCl + CH3CHCH3; (7.3 ± 0.2) × 10?11 exp[?(68 ± 10)/ T], Cl + n‐C4H10 → HCl + CH3 CH2CH2CH2; (9.9 ± 2.2) × 10?11 exp[(106 ± 75)/ T], Cl + n‐C4H10 → HCl + CH3CH2CHCH3; (13.0 ± 1.8) × 10?11 exp[?(104 ± 50)/ T], Cl + i‐C4H10 → HCl + CH3CHCH3CH2; (2.9 ± 0.5) × 10?11 exp[(155 ± 58)/ T], Cl + i‐C4H10 → HCl + CH3CCH3CH3 (all error bars are ± 2σ precision). These studies provide a set of reaction rate constants allowing to determine the contribution of competing hydrogen abstractions from primary, secondary, or tertiary carbon atom in alkane molecule. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 651–658, 2002  相似文献   

10.
The bimolecular channels of the ClO self‐reaction, although negligible under stratospheric conditions, become significant above ambient temperature. The kinetics of two of the three bimolecular channels of the ClO self‐reaction, ClO + ClO → Cl2 + O2 (1b) and ClO + ClO → OClO + Cl (1d), were studied at T = 298–323 K and at ambient pressure (patm≈ 760 ± 10 Torr). Radicals were generated via laser photolysis and monitored using UV absorption spectroscopy. The inclusion of charge‐coupled device (CCD) detection allowed broadband monitoring of the radicals of interest along with the temporal resolution of their concentrations. Accurate and unequivocal quantification of the structured absorbers (ClO and OClO) was obtained via differential fitting procedures. The Arrhenius expressions obtained are k1b = 2.9?1.8+4.4 × 10?14exp[?(283 ± 282)/T] cm3 molecule?1 s?1 and k1d = 7.2?6.1+39 × 10?15exp[?(225 ± 574)/T] cm3 molecule?1 s?1, where the errors are 1σ. The temperature dependences obtained in this work for both channels monitored are considerably less pronounced than those reported by Nickolaisen et al. © 2012 Wiley Periodicals, Inc. Int J Chem Kinet 44: 386–397, 2012  相似文献   

11.
The multiple‐channel reactions OH + CH3SCH3 → products, CF3 + CH3SCH3 → products, and CH3 + CH3SCH3 → products are investigated by direct dynamics method. The optimized geometries, frequencies, and minimum energy path are all obtained at the MP2/6‐31+G(d,p) level, and energetic information is further refined by the MC‐QCISD (single‐point) method. The rate constants for eight reaction channels are calculated by the improved canonical variational transition state theory with small‐curvature tunneling contribution over the temperature range 200–3000 K. The total rate constants are in good agreement with the available experimental data and the three‐parameter expressions k1 = 4.73 × 10?16T1.89 exp(?662.45/T), k2 = 1.02 × 10?32T6.04 exp(933.36/T), k3 = 3.98 × 10?35T6.60 exp(660.58/T) (in unit of cm3 molecule?1 s?1) over the temperature range of 200–3000 K are given. Our calculations indicate that hydrogen abstraction channels are the major channels and the others are minor channels over the whole temperature range. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

12.
The rate coefficients for the reaction OH + CH3CH2CH2OH → products (k1) and OH + CH3CH(OH)CH3 → products (k2) were measured by the pulsed‐laser photolysis–laser‐induced fluorescence technique between 237 and 376 K. Arrhenius expressions for k1 and k2 are as follows: k1 = (6.2 ± 0.8) × 10?12 exp[?(10 ± 30)/T] cm3 molecule?1 s?1, with k1(298 K) = (5.90 ± 0.56) × 10?12 cm3 molecule?1 s?1, and k2 = (3.2 ± 0.3) × 10?12 exp[(150 ± 20)/T] cm3 molecule?1 s?1, with k2(298) = (5.22 ± 0.46) × 10?12 cm3 molecule?1 s?1. The quoted uncertainties are at the 95% confidence level and include estimated systematic errors. The results are compared with those from previous measurements and rate coefficient expressions for atmospheric modeling are recommended. The absorption cross sections for n‐propanol and iso‐propanol at 184.9 nm were measured to be (8.89 ± 0.44) × 10?19 and (1.90 ± 0.10) × 10?18 cm2 molecule?1, respectively. The atmospheric implications of the degradation of n‐propanol and iso‐propanol are discussed. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 42: 10–24, 2010  相似文献   

13.
The kinetic and mechanism of the reaction Cl + HO2 → products (1) have been studied in the temperature range 230–360 K and at total pressure of 1 Torr of helium using the discharge‐flow mass spectrometric method. The following Arrhenius expression for the total rate constant was obtained either from the kinetics of HO2 consumption in excess of Cl atoms or from the kinetics of Cl in excess of HO2: k1 = (3.8 ± 1.2) × 10?11 exp[(40 ± 90)/T] cm3 molecule?1 s?1, where uncertainties are 95% confidence limits. The temperature‐independent value of k1 = (4.4 ± 0.6) × 10?11 cm3 molecule?1 s?1 at T = 230–360 K, which can be recommended from this study, agrees well with most recent studies and current recommendations. Both OH and ClO were detected as the products of reaction (1) and the rate constant for the channel forming these species, Cl + HO2 → OH + ClO (1b), has been determined: k1b = (8.6 ± 3.2) × 10?11 exp[?(660 ± 100)/T] cm3 molecule?1 s?1 (with k1b = (9.4 ± 1.9) × 10?12 cm3 molecule?1 s?1 at T = 298 K), where uncertainties represent 95% confidence limits. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 317–327, 2001  相似文献   

14.
Rate constants for the removal of Cl atoms in the reaction Cl + O3 → ClO + O2 were measured by the flash photolysis resonance fluorescence technique over the temperature range 213–298 K. The rate constant is given by the Arrhenius expression (2.94 ± 0.49) × 10?11 exp[?(298 ± 39)/T] in units of cm3 molecule?1 s?1. Comparison with recent results from other laboratories are presented.  相似文献   

15.
The rate coefficients for the reactions of Cl atoms with CH3Br, (k1) and CH2Br2, (k2) were measured as functions of temperature by generating Cl atoms via 308 nm laser photolysis of Cl2 and measuring their temporal profiles via resonance fluorescence detection. The measured rate coefficients were: k1 = (1.55 ± 0.18) × 10?11 exp{(?1070 ± 50)/T} and k2 = (6.37 ± 0.55) × 10?12 exp{(?810 ± 50)/T} cm3 molecule?1 s?1. The possible interference of the reaction of CH2Br product with Cl2 in the measurement of k1 was assessed from the temporal profiles of Cl at high concentrations of Cl2 at 298 K. The rate coefficient at 298 K for the CH2Br + Cl2 reaction was derived to be (5.36 ± 0.56) × 10?13 cm3 molecule?1 s?1. Based on the values of k1 and k2, it is deduced that global atmospheric lifetimes for CH3Br and CH2Br2 are unlikely to be affected by loss via reaction with Cl atoms. In the marine boundary layer, the loss via reaction (1) may be significant if the Cl concentrations are high. If found to be true, the contribution from oceans to the overall CH3Br budget may be less than what is currently assumed. © 1994 John Wiley & Sons, Inc.  相似文献   

16.
The kinetics of C6H5 reactions with n‐CnH2n+2 (n = 3, 4, 6, 8) have been studied by the pulsed laser photolysis/mass spectrometric method using C6H5COCH3 as the phenyl precursor at temperatures between 494 and 1051 K. The rate constants were determined by kinetic modeling of the absolute yields of C6H6 at each temperature. Another major product C6H5CH3 formed by the recombination of C6H5 and CH3 could also be quantitatively modeled using the known rate constant for the reaction. A weighted least‐squares analysis of the four sets of data gave k (C3H8) = (1.96 ± 0.15) × 1011 exp[?(1938 ± 56)/T], and k (n‐C4H10) = (2.65 ± 0.23) × 1011 exp[?(1950 ± 55)/T] k (n‐C6H14) = (4.56 ± 0.21) × 1011 exp[?(1735 ± 55)/T], and k (n?C8H18) = (4.31 ± 0.39) × 1011 exp[?(1415 ± 65)T] cm3 mol?1 s?1 for the temperature range studied. For the butane and hexane reactions, we have also applied the CRDS technique to extend our temperature range down to 297 K; the results obtained by the decay of C6H5 with CRDS agree fully with those determined by absolute product yield measurements with PLP/MS. Weighted least‐squares analyses of these two sets of data gave rise to k (n?C4H10) = (2.70 ± 0.15) × 1011 exp[?(1880 ± 127)/T] and k (n?C6H14) = (4.81 ± 0.30) × 1011 exp[?(1780 ± 133)/T] cm3 mol?1 s?1 for the temperature range 297‐‐1046 K. From the absolute rate constants for the two larger molecular reactions (C6H5 + n‐C6H14 and n‐C8H18), we derived the rate constant for H‐abstraction from a secondary C? H bond, ks?CH = (4.19 ± 0.24) × 1010 exp[?(1770 ± 48)/T] cm3 mol?1 s?1. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 36: 49–56, 2004  相似文献   

17.
The kinetics of the reactions of hydroxy radicals with cyclopropane and cyclobutane has been investigated in the temperature range of 298–492 K with laser flash photolysis/resonance fluorescence technique. The temperature dependence of the rate constants is given by k1 = (1.17 ± 0.15) × 10?16 T3/2 exp[?(1037 ± 87) kcal mol?1/RT] cm3 molecule?1 s1 and k2 = (5.06 ± 0.57) × 10?16 T3/2 exp[?(228 ± 78) kcal mol?1/RT] cm3 molecule?1 s?1 for the reactions OH + cyclopropane → products (1) and OH + cyclobutane → products (2), respectively. Kinetic data available for OH + cycloalkane reactions were analyzed in terms of structure-reactivity correlations involving kinetic and energetic parameters.  相似文献   

18.
The rate constants, k1, of the reaction of CF3OC(O)H with OH radicals were measured by using a Fourier transform infrared spectroscopic technique in an 11.5‐dm3 reaction chamber at 242–328 K. OH radicals were produced by UV photolysis of an O3–H2O–He mixture at an initial pressure of 200 Torr. Ozone was continuously introduced into the reaction chamber during UV irradiation. With CF3OCH3 as a reference compound, k1 at 298 K was (1.65 ± 0.13) × 10?14 cm3 molecule?1 s?1. The temperature dependence of k1 was determined as (2.33 ± 0.42) × 10?12 exp[?(1480 ± 60)/T] cm3 molecule?1 s?1; possible systematic uncertainty could add an additional 20% to the k1 values. The atmospheric lifetime of CF3OC(O)H with respect to reaction with OH radicals was calculated to be 3.6 years. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 337–344 2004  相似文献   

19.
Time-resolved resonance fluorescence detection of atomic chlorine following 266-nm laser flash photolysis of Cl2CO/RSR'/N2 mixtures has been employed to study the kinetics of Cl reactions with H2S(k1), CH3SH(k2), D2S(k3), and CD3SD(k4) as a function of temperature (193–431 K) and pressure (25–600 torr). Arrhenius expressions which describe our results are (units are 10?11 cm3molecule?1s?1; uncertainties are 2σ, precision only) k1 = (3.69 ± 0.33) exp[(208 ± 24)/T], k2 = (11.9 ± 1.7) exp[(151 ± 38)/T], and k3 = (1.93 ± 0.32) exp[(168 ± 42)/T]. The Cl + CD3SD reaction has been studied at 299 K and 396 K; values for k4 at these two temperatures are essentially the same as those measured for k2. Our results are compared with earlier studies and the mechanistic implications of observed negative activation energies and H? D kinetic isotope effects are discussed. © 1995 John Wiley & Sons, Inc.  相似文献   

20.
The kinetics of the hydrogen abstraction from H2O2 by ?OH has been modeled with MP2/6‐31G*//MP2/6‐31G*, MP2‐SAC//MP2/6‐31G*, MP2/6‐31+G**//MP2/6‐31+G**, MP2‐SAC// MP2/6‐31+G**, MP4(SDTQ)/6‐311G**//MP2/6‐31G*, CCSD(T)/6‐31G*//CCSD(T)/6‐31G*, CCSD(T)/6‐31G**//CCSD(T)/6‐31G**, CCSD(T)/6‐311++G**//MP2/6‐31G* in the gas phase. MD simulations have been used to generate initial geometries for the stationary points along the potential energy surface for hydrogen abstraction from H2O2. The effective fragment potential (EFP) has been used to optimize the relevant structures in solution. Furthermore, the IEFPCM model has been used for the supermolecules generated via MD calculations. IEFPCM/MP2/6‐31G* and IEFPCM/CCSD(T)/6‐31G* calculations have also been performed for structures without explicit water molecules. Experimentally, the rate constant for hydrogen abstraction by ?OH drops from 1.75 × 10?12 cm3 molecule?1 s?1 in the gas phase to 4.48 × 10?14 cm3 molecule?1 s?1 in solution. The same trend has been reproduced best with MP4 (SDTQ)/6‐311G**//MP2/6‐31G* in the gas phase (0.415 × 10?12 cm3 molecule?1 s?1) and with EFP (UHF/6‐31G*) in solution (3.23 × 10?14 cm3 molecule?1 s?1). © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 37: 502–514, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号