首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Ni-Al layered double hydroxides with Ni2+/Al3+ molar ratios of 1.5 and 3.0 have been synthesized by co-precipitation and studied as catalyst precursors for purification of CO-containing gas-mixtures by means of CO oxidation to CO2 and conversion of CO by water vapor (water-gas shift reaction). The influence of the alkali additives (K+ ions) on the water-gas shift activity has been also examined. It was established that the catalytic activity of both reactions increases with the temperature and the nickel content. Hypothetic schemes are proposed about activation of the catalysts in the WGSR and CO oxidation including redox Ni2+ ? Ni3+ transition on the catalyst surface. The activity in WGSR is positively affected by the presence of potassium promoter, depending on its amount. The sample with higher nickel loading is the most effective catalyst as for CO oxidation as well as for WGSR at intermediate temperatures after potassium promotion.  相似文献   

2.
Photo-driven CH4 conversion to multi-carbon products and H2 is attractive but challenging, and the development of efficient catalytic systems is critical. Herein, we construct a solar-energy-driven redox cycle for combining CH4 conversion and H2 production using iron ions. A photo-driven iron-induced reaction system was developed, which is efficient at selective coupling of CH4 as well as conversion of benzene and cyclohexane under mild conditions. For CH4 conversion, 94 % C2 selectivity and a C2H6 formation rate of 8.4 μmol h−1 is achieved. Mechanistic studies reveal that CH4 coupling is induced by hydroxyl radical, which is generated by photo-driven intermolecular charge migration of an Fe3+ complex. The delicate coordination structure of the [Fe(H2O)5OH]2+ complex ensures selective C−H bond activation and C−C coupling of CH4. The produced Fe2+ can be used to reduce the potential for electrolytic H2 production, and then turns back into Fe3+, forming an energy-saving and sustainable recyclable system.  相似文献   

3.
Photocatalytic N2 fixation has attracted substantial attention in recent years, as it represents a green and sustainable development route toward efficiently converting N2 to NH3 for industrial applications. How to rationally design catalysts in this regard remains a challenge. Here we propose a strategy that uses plasmonic hot electrons in the highly doped TiO2 to activate the inert N2 molecules. The synthesized semiconductor catalyst Mo-doped TiO2 shows a NH3 production efficiency as high as 134 μmol·g-1·h-1 under ambient conditions, which is comparable to that achieved by the conventional plasmonic gold metal. By means of ultrafast spectroscopy we reveal that the plasmonic hot electrons in the system are responsible for the activation of N2 molecules, enabling improvement the catalytic activity of TiO2. This work opens a new avenue toward semiconductor plasmon-based photocatalytic N2 fixation.  相似文献   

4.
Activated carbon (AC) supported silver catalysts were prepared by incipient wetness impregnation method and their catalytic performance for CO preferential oxidation (PROX) in excess H2 was evaluated. Ag/AC catalysts, after reduction in H2 at low temperatures (≤200 °C) following heat treatment in He at 200 °C (He200H200), exhibited the best catalytic properties. Temperature-programmed desorption (TPD), X-ray diffraction (XRD) and temperature-programmed reduction (TPR) results indicated that silver oxides were produced during heat treatment in He at 200 °C which were reduced to metal silver nanoparticles in H2 at low temperatures (≤200 °C), simultaneously generating the adsorbed water/OH. CO conversion was enhanced 40% after water treatment following heat treatment in He at 600 °C. These results imply that the metal silver nanoparticles are the active species and the adsorbed water/OH has noticeable promotion effects on CO oxidation. However, the promotion effect is still limited compared to gold catalysts under the similar conditions, which may be the reason of low selectivity to CO oxidation in PROX over silver catalysts. The reported Ag/AC-S-He catalyst after He200H200 treatment displayed similar PROX of CO reaction properties to Ag/SiO2. This means that Ag/AC catalyst is also an efficient low-temperature CO oxidation catalyst.  相似文献   

5.
The mechanism of formation of the electronically excited radical OH*(A2Σ+) has been studied by analyzing calculations quantitatively describing the results of shock wave experiments carried out in order to determine the moment of maximum OH* radiation at temperatures T < 1500 K and pressures P ≤ 2 atm in the H2 + O2 mixtures diluted by argon when the vibrational nonequilibrium is a factor determining the mechanism and rate of the overall process. In kinetic calculations, the vibrational nonequilibrium of the initial H2 and O2 components, the HO2, OH(X2Π), O2*(1Δ) intermediates, and the reaction product H2O were taken into account. The analysis showed that under these conditions the main contribution to the overall process of OH* formation is caused by the reactions OH + Ar → OH* + Ar, H2 + HO2 → OH* + H2O, H2 + O*(1D) → OH* + H, HO2 + O → OH* + O2 and H + H2O → OH* + H2, which occur in the vibrational nonequilibrium mode (their activation barrier is overcome due to the vibrational excitation of reactants), and by H + O3 → OH* + O2 and H + H2O2 → OH* + H2O, which are reverse to the reactions of chemical quenching.  相似文献   

6.
The study of energy and charge transfer during chemical reactions on metals is of great importance for understanding the phenomena involved in heterogeneous catalysis. Despite extensive studies, very little is known about the nature of hot electrons generated at solid–liquid interfaces. Herein, we report remarkable results showing the detection of hot electrons as a chemicurrent generated at the solid–liquid interface during decomposition of hydrogen peroxide (H2O2) catalyzed on Schottky nanodiodes. The chemicurrent reflects the activity of the catalytic reaction and the state of the catalyst in real time. We show that the chemicurrent yield can reach values up to 10?1 electrons/O2 molecule, which is notably higher than that for solid–gas reactions on similar nanodiodes.  相似文献   

7.
Herein, the exposure of highly-active nitrogen cation sites has been accomplished by photo-driven quasi-topological transformation of a 1,10-phenanthroline-5,6-dione-based covalent organic framework (COF), which contributes to hydrogen peroxide (H2O2) synthesis during the 2-electron O2 photoreduction. The exposed nitrogen cation sites with photo-enhanced Lewis acidity not only act as the electron-transfer motor to adjust the inherent charge distribution, powering continuous and stable charge separation, and broadening visible-light adsorption, but also providing a large number of active sites for O2 adsorption. The optimal catalyst shows a high H2O2 production rate of 11965 μmol g−1 h−1 under visible light irradiation and a remarkable apparent quantum yield of 12.9 % at 400 nm, better than most of the previously reported COF photocatalysts. This work provides new insights for designing photo-switchable nitrogen cation sites as catalytic centers toward efficient solar to chemical energy conversion.  相似文献   

8.
Four different mechanistic pathways for Mo(CO)6 and a reaction mechanism for the binuclear species Mo2(CO)10 catalyzed water–gas shift reaction (WGSR) have been analyzed using density functional method. It turned out that the binuclear catalyst provides more facile transformations through lower barriers in comparison to the mononuclear catalyst, which is explained by the metal–metal cooperativity between the two Mo centers. The energy span model indicates that the higher the TOF calculated, the faster the catalytic rate and the higher the catalytic efficiency. The bimetallic catalyst (Mo2(CO)10) with the highest value of the calculated TOF (2.60 × 10?15 s?1), which is higher than that of Fe2(CO)9 (8.96 × 10?20 s?1) (see Kuriakose et al. in Inorg Chem 51: 377, 2012). The later prove the WGSR catalyst with high performance. Our conclusions will be useful for the design of improved WGSR catalysts in the future.  相似文献   

9.
The redox and carbonyl mechanisms of the water gas shift reaction (WGSR) catalyzed by the single noble metal (NM) atoms of Ru, Rh, Pd, Ag (from the 4d row) and Os, Ir, Pt, Au (from the 5d row) supported on vanadium oxide cluster ion V2O6+ have been firstly investigated through the density functional theory (DFT) calculations. Natural population analysis (NPA) shows NMs possess positive charges in the model systems and usually act as reactant molecule trapper and an effective electron store to accept or release electrons. The carbonyl mechanism avoiding the oxygen vacancy (Ov) formation and directing NM‐H bond cleavage is strongly preferred over the redox mechanism. Our computations identified single‐atom catalysts (SAC), especially RhV2O6+ and PdV2O6+ exhibit improved overall catalytic performance because of the lower rate‐control step activation barriers via the associate carbonyl mechanism. This work aims to provide some detailed insights into the effects of NM in bimetallic oxide clusters for WGSR at a molecular level, and serves as a starting point for further theoretical studies on the mechanisms of related SAC catalytic reactions.  相似文献   

10.
DFT investigations are carried out to explore the effective catalyst forms of DBU and H2O and the mechanism for the formation of 2,3‐dihydropyrido[2,3‐d]‐pyrimidin‐4(1H)‐ones. Three main pathways are disclosed under unassisted, water‐catalyzed, DBU and water cocatalyzed conditions, which involves concerted nucleophilic addition and H‐transfer, concerted intramolecular cyclization and H‐transfer, and Dimroth rearrangement to form the product. The results indicated that the DBU and water cocatalyzed pathway is the most favored one as compared to the rest two pathways. The water donates one H to DBU and accepts H from 2‐amino‐nicotinonitrile ( 1 ), forming [DBU‐H]+‐H2O as effective catalyst form in the proton migration transition state rather than [DBU‐H]+‐OH?. The hydrogen bond between [DBU‐H]+···H2O··· 1 ? decreases the activation barrier of the rate‐determining step. Our calculated results open a new insight for the green catalyst model of DBU‐H2O. © 2015 Wiley Periodicals, Inc.  相似文献   

11.
C−H dissociation and C−C coupling are two key steps in converting CH4 into multi-carbon compounds. Here we report a synergy of Au and Ag to greatly promote C2H6 formation over Au1Ag single-atom alloy nanoparticles (Au1Ag NPs)-modified ZnO catalyst via photocatalytic oxidative coupling of methane (POCM) with O2 and H2O. Atomically dispersed Au in Au1Ag NPs effectively promotes the dissociation of O2 and H2O into *OOH, promoting C−H activation of CH4 on the photogenerated O to form *CH3. Electron-deficient Au single atoms, as hopping ladders, also facilitate the migration of electron donor *CH3 from ZnO to Au1Ag NPs. Finally, *CH3 coupling can readily occur on Ag atoms of Au1Ag NPs. An excellent C2H6 yield of 14.0 mmol g−1 h−1 with a selectivity of 79 % and an apparent quantum yield of 14.6 % at 350 nm is obtained via POCM with O2 and H2O, which is at least two times that of the photocatalytic system. The bimetallic synergistic strategy offers guidance for future catalyst design for POCM with O2 and H2O.  相似文献   

12.
Carbonylation of ethanol with CO2 as carbonyl source into value-added esters is of considerable significance and interest, while remains of great challenge due to the harsh conditions for activation of inert CO2 in that the harsh conditions result in undesired activation of α-C−H and even cleavage of C−C bond in ethanol to deteriorate the specific activation of O−H bond. Herein, we propose a photo-thermal cooperative strategy for carbonylation of ethanol with CO2, in which CO2 is activated to reactive CO via photo-catalysis with the assistance of *H from thermally-catalyzed dissociation of alcoholic O−H bond. To achieve this proposal, an interfacial site and oxygen vacancy both abundant SrTiCuO3-x supported Cu2O (Cu2O-SrTiCuO3-x) has been designed. A production of up to 320 μmol g−1 h−1 for ethyl formate with a selectivity of 85.6 % to targeted alcoholic O−H activation has been afforded in photo-thermal assisted gas-solid process under 3.29 W cm−1 of UV/Vis light irradiation (144 °C) and 0.2 MPa CO2. In the photo-driven activation of CO2 and following carbonylation, CO2 activation energy decreases to 12.6 kJ mol−1, and the cleavage of alcoholic α-C−H bond has been suppressed.  相似文献   

13.
Photocatalytic synthesis of hydrogen peroxide (H2O2) is a potential clean method, but the long distance between the oxidation and reduction sites in photocatalysts hinders the rapid transfer of photogenerated charges, limiting the improvement of its performance. Here, a metal-organic cage photocatalyst, Co14(L−CH3)24 , is constructed by directly coordinating metal sites (Co sites) used for the O2 reduction reaction (ORR) with non-metallic sites (imidazole sites of ligands) used for the H2O oxidation reaction (WOR), which shortens the transport path of photogenerated electrons and holes, and improves the transport efficiency of charges and activity of the photocatalyst. Therefore, it can be used as an efficient photocatalyst with a rate of as high as 146.6 μmol g−1 h−1 for H2O2 production under O2-saturated pure water without sacrificial agents. Significantly, the combination of photocatalytic experiments and theoretical calculations proves that the functionalized modification of ligands is more conducive to adsorbing key intermediates (*OH for WOR and *HOOH for ORR), resulting in better performance. This work proposed a new catalytic strategy for the first time; i.e., to build a synergistic metal-nonmetal active site in the crystalline catalyst and use the host–guest chemistry inherent in the metal-organic cage (MOC)to increase the contact between the substrate and the catalytically active site, and finally achieve efficient photocatalytic H2O2 synthesis.  相似文献   

14.
Inducing strong metal-support interaction (SMSI) has been a useful way to control the structure of surface active sites. The SMSI often causes the encapsulation of metal particles with an oxide layer. Herein, an amorphous ceria shell was formed on Cu nanoparticles under a mild gas condition with high activity and durability for surface reaction. Cu−Ce solid solution promoted the transfer of surface oxygen species, which induced the ceria shell formation on Cu nanoparticles. This catalyst was used for CO2 hydrogenation, selectively producing CO with high low-temperature activity and good durability for operation at high temperature. CO2 activation and H2 spillover could occur at low temperatures, enhancing the activity. The shell prevented the sintering, assuring durability. This catalyst was applied to a bench-scale reactor without loss in performance, resulting in high CO productivity in all temperature ranges.  相似文献   

15.
Heptene-2 aromatization on Pt/Al2O3 in a pulse microcatalytic reactor has been studied under H2 and N2 atmosphere at temperatures between 330 to 500°C and at a total pressure of 4.0 kg/cm2. Results showed that the production of only cracked products (mainly methane) from deep fragmentation of heptene-2 in H2 sharply contrasts with the reaction in N2 in which the catalyst showed aromatic selectivity with the production of methane, benzene and toluene. In H2-N2 mixtures, 75% H2 was required to reduce the aromatization activity of the catalyst to zero. A test of the kinetic data using Sica's method [15] of pulse kinetic analysis suggests a first order in heptene-2 with an activation energy of 102.61 kJ/mol in N2 and 124.71 kJ/mol in H2. The difference in activation energies has been attributed to a difference in reaction mechanisms in both gases.  相似文献   

16.
Strong metal-support interactions (SMSI) have gained great attention in the heterogeneous catalysis field, but its negative role in regulating light-induced electron transfer is rarely explored. Herein, we describe how SMSI significantly restrains the activity of Ru/TiO2 in light-driven CO2 reduction by CH4 due to the photo-induced transfer of electrons from TiO2 to Ru. In contrast, on suppression of SMSI Ru/TiO2−H2 achieves a 46-fold CO2 conversion rate compared to Ru/TiO2. For Ru/TiO2−H2, a considerable number of photo-excited hot electrons from Ru nanoparticles (NPs) migrate to oxygen vacancies (OVs) and facilitate CO2 activation under illumination, simultaneously rendering Ruδ+ electron deficient and better able to accelerate CH4 decomposition. Consequently, photothermal catalysis over Ru/TiO2−H2 lowers the activation energy and overcomes the limitations of a purely thermal system. This work offers a novel strategy for designing efficient photothermal catalysts by regulating two-phase interactions.  相似文献   

17.
Oxygen reduction and water oxidation are two key processes in fuel cell applications. The oxidation of water to dioxygen is a 4 H+/4 e? process, while oxygen can be fully reduced to water by a 4 e?/4 H+ process or partially reduced by fewer electrons to reactive oxygen species such as H2O2 and O2?. We demonstrate that a novel manganese corrole complex behaves as a bifunctional catalyst for both the electrocatalytic generation of dioxygen as well as the reduction of dioxygen in aqueous media. Furthermore, our combined kinetic, spectroscopic, and electrochemical study of manganese corroles adsorbed on different electrode materials (down to a submolecular level) reveals mechanistic details of the oxygen evolution and reduction processes.  相似文献   

18.
A density functional theory calculation has been carried out to investigate the mechanism of W(CO)6 and W2(CO)10 catalyzed water-gas-shift reaction (WGSR). The calculations indicate that the bimetallic catalyst (W2(CO)10) would be likely to be more highly active than the mononuclear metal-based catalyst (W(CO)6) due to the possibility of metal–metal cooperativity in reducing the barriers for the WGSR. The energetic span model is a tool to compute catalytic turnover frequencies (TOFs) which is the traditional measure of the efficiency of a catalyst. The one with the highest efficiency usually gives the highest TOF. The bimetallic catalyst (W2(CO)10) exhibits high catalytic activity towards WGSR due to the highest value of the calculated TOF (3.62 × 10?12 s?1, gas phase; 8.74 × 10?15 s?1, solvent phase), which is higher than the value of TOF (8.96 × 10?20 s?1, gas phase; 3.96 × 10?19 s?1, solvent phase) proposed by Kuriakose et al. (Inorg Chem 51:377–385, 2012). Our results will be important for designing a better catalyst for the industrially important reaction.  相似文献   

19.
Designing highly efficient and stable electrode-electrolyte interface for hydrogen peroxide (H2O2) electrosynthesis remains challenging. Inhibiting the competitive side reaction, 4 e oxygen reduction to H2O, is essential for highly selective H2O2 electrosynthesis. Instead of hindering excessive hydrogenation of H2O2 via catalyst modification, we discover that adding a hydrogen-bond acceptor, dimethyl sulfoxide (DMSO), to the KOH electrolyte enables simultaneous improvement of the selectivity and activity of H2O2 electrosynthesis. Spectral characterization and molecular simulation confirm that the formation of hydrogen bonds between DMSO and water molecules at the electrode-electrolyte interface can reduce the activity of water dissociation into active H* species. The suitable H* supply environment hinders excessive hydrogenation of the oxygen reduction reaction (ORR), thus improving the selectivity of 2 e ORR and achieving over 90 % selectivity of H2O2. This work highlights the importance of regulating the interfacial hydrogen-bond environment by organic molecules as a means of boosting electrochemical performance in aqueous electrosynthesis and beyond.  相似文献   

20.
The organometallic compound [Cp*Rh(bpy)(H2O)]2+ is a versatile catalyst for the in situ regeneration of reduced nicotinamides and flavins by catalyzing the electron transfer between the cathode or formate to the oxidized cofactors and prosthetic groups. In the present contribution we demonstrate the feasibility of phosphite as an alternative source of reducing equivalents. Thus, [Cp*Rh(bpy)(H2O)]2+ combines the catalytic activities of hydrogenases, formate and phosphite dehydrogenases in one catalyst. The catalytic properties of this novel regeneration approach are investigated, demonstrating that the general catalytic properties of [Cp*Rh(bpy)(H2O)]2+ are preserved. The principal applicability to promote alcoholdehydrogenase‐catalyzed reduction reactions is demonstrated. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号