首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The application of double electron-electron resonance (DEER) with site-directed spin labeling (SDSL) to measure distances in proteins and protein complexes in living cells puts rigorous restraints on the spin-label. The linkage and paramagnetic centers need to resist the reducing conditions of the cell. Rigid attachment of the probe to the protein improves precision of the measured distances. Here, three two-armed GdIII complexes, GdIII-CLaNP13a/b/c were synthesized. Rather than the disulfide linkage of most other CLaNP molecules, a thioether linkage was used to avoid reductive dissociation of the linker. The doubly GdIII labeled N55C/V57C/K147C/T151C variants of T4Lysozyme were measured by 95 GHz DEER. The constructs were measured in vitro, in cell lysate and in Dictyostelium discoideum cells. Measured distances were 4.5 nm, consistent with results from paramagnetic NMR. A narrow distance distribution and typical modulation depth, also in cell, indicate complete and durable labeling and probe rigidity due to the dual attachment sites.  相似文献   

2.
Spectroscopic and biophysical methods for structural determination at atomic resolution are fundamental in studies of biological function. Here we introduce an approach to measure molecular distances in bio‐macromolecules using 19F nuclear spins and nitroxide radicals in combination with high‐frequency (94 GHz/3.4 T) electron–nuclear double resonance (ENDOR). The small size and large gyromagnetic ratio of the 19F label enables to access distances up to about 1.5 nm with an accuracy of 0.1–1 Å. The experiment is not limited by the size of the bio‐macromolecule. Performance is illustrated on synthesized fluorinated model compounds as well as spin‐labelled RNA duplexes. The results demonstrate that our simple but strategic spin‐labelling procedure combined with state‐of‐the‐art spectroscopy accesses a distance range crucial to elucidate active sites of nucleic acids or proteins in the solution state.  相似文献   

3.
With the rise in fluorinated pharmaceuticals, it is becoming increasingly important to develop new 19F NMR-based methods to assist in their analysis. Crucially, obtaining information regarding the conformational dynamics of a molecule in solution can aid the design of strongly binding therapeutics. Herein, we report the development of a 2D 1H–19F Heteronuclear Overhauser Spectroscopy (HOESY) experiment to measure 1H–19F internuclear distances, with accuracies of ~5% when compared with 1H–19F internuclear distances calculated by quantum chemical methods. We demonstrate that correcting for cross-relaxation of 1H, using the diagonal peaks from the 2D 1H–1H Nuclear Overhauser Enhancement Spectroscopy (NOESY), is critical in obtaining accurate values for 1H–19F internuclear distances. Finally, we show that by using the proposed method to measure 1H–19F internuclear distances, we are able to determine the relative stereochemistry of two fluorinated pharmaceuticals.  相似文献   

4.
5.
The 1H–19F heteronuclear NMR experiments were achieved using the conventional spectrometer equipped with a single high band amplifier and a 1H/19F/13C double‐tuned probe. Although double high band amplifiers are generally required to perform such experiments, a simple modification of pathway in the conventional spectrometer was capable of acquiring various 1H–19F heteronuclear spectra. The efficiency of the present technique was demonstrated in an application for 19F{1H} and 1H{19F} saturation transfer difference experiments. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
We present two novel octadentate cyclen-based ligands bearing one (L1) or two (L2) phenylacetamide pendants with two CF3 groups either at positions 3 and 5 (L1) or 4 (L2). The corresponding Gd3+ complexes possess one coordinated water molecule, as confirmed by luminescence lifetime measurements on the EuIII and TbIII analogues. A detailed 1H and 17O relaxometric characterization has revealed the parameters that govern the relaxivities of these complexes. The water-exchange rate of the mono-amide derivative GdL1 (kex298=1.52×106 s−1) is faster than that determined for the bis-amide complex GdL2 (kex298=0.73×106 s−1). 1H and 19F NMR studies have indicated that the complexes are present in solution almost exclusively as the square-antiprismatic (SAP) isomers. 19F NMR relaxation studies indicated Gd ⋅⋅⋅ F distances of 7.4±0.1 and 9.1±0.1 Å for GdL1 and GdL2, respectively. Phantom MRI studies revealed the favorable properties of GdL2 as a dual 1H/19F magnetic resonance imaging (MRI) probe, whereas the shorter Gd ⋅⋅⋅ F distance of GdL1 reduces the signal-to-noise ratio due to the very short transverse relaxation time of the 19F NMR signal.  相似文献   

7.
The cellular environment of proteins differs considerably from in vitro conditions under which most studies of protein structures are carried out. Therefore, there is a growing interest in determining dynamics and structures of proteins in the cell. A key factor for in‐cell distance measurements by the double electron–electron resonance (DEER) method in proteins is the nature of the used spin label. Here we present a newly designed GdIII spin label, a thiol‐specific DOTA‐derivative (DO3MA‐3BrPy), which features chemical stability and kinetic inertness, high efficiency in protein labelling, a short rigid tether, as well as favorable spectroscopic properties, all are particularly suitable for in‐cell distance measurements by the DEER method carried out at W‐band frequencies. The high performance of DO3MA‐3BrPy‐GdIII is demonstrated on doubly labelled ubiquitin D39C/E64C, both in vitro and in HeLa cells. High‐quality DEER data could be obtained in HeLa cells up to 12 h after protein delivery at in‐cell protein concentrations as low as 5–10 μm .  相似文献   

8.
The cellular environment of proteins differs considerably from in vitro conditions under which most studies of protein structures are carried out. Therefore, there is a growing interest in determining dynamics and structures of proteins in the cell. A key factor for in‐cell distance measurements by the double electron–electron resonance (DEER) method in proteins is the nature of the used spin label. Here we present a newly designed GdIII spin label, a thiol‐specific DOTA‐derivative (DO3MA‐3BrPy), which features chemical stability and kinetic inertness, high efficiency in protein labelling, a short rigid tether, as well as favorable spectroscopic properties, all are particularly suitable for in‐cell distance measurements by the DEER method carried out at W‐band frequencies. The high performance of DO3MA‐3BrPy‐GdIII is demonstrated on doubly labelled ubiquitin D39C/E64C, both in vitro and in HeLa cells. High‐quality DEER data could be obtained in HeLa cells up to 12 h after protein delivery at in‐cell protein concentrations as low as 5–10 μm .  相似文献   

9.
《中国化学》2018,36(1):25-30
Multimodal imaging techniques have been demonstrated to be greatly advantageous in achieving accurate diagnosis and gained increasing attention in recent decades. Herein, we present a new strategy to integrate the complementary modalities of 19F magnetic resonance imaging (19F MRI) and fluorescence imaging (FI) into a polymer nanoprobe composed of hydrophobic fluorescent organic core and hydrophilic fluorinated polymer shell. The alkyne‐terminated fluorinated copolymer (Pn) of 2,2,2‐trifluoroethyl acrylate (TFEA) and poly(ethylene glycol) methyl ether acrylate (PEGA) was first prepared via atom transfer radical polymerization (ATRP). The PEGA plays an important role in both improving 19F signal and modulating the hydrophilicity of Pn. The alkynyl tail in Pn is readily conjugated with azide modified tetra‐phenylethylene (TPE) through click chemistry to form azo polymer (TPE‐azo‐Pn). The core‐shell nanoprobes (TPE‐P3N) with an average particle size of 57.2 ± 8.8 nm are obtained via self‐assembly with ultrasonication in aqueous solution. These nanoprobes demonstrate high water stability, good biocompatibility, strong fluorescence and good 19F MRI performance, which present great potentials for simultaneous fluorescence imaging and 19F–MR imaging.  相似文献   

10.
Effective diagnosis of disease and its progression can be aided by 19F magnetic resonance imaging (MRI) techniques. Specifically, the inherent sensitivity of the spin–lattice relaxation time (T1) of 19F nuclei to oxygen partial pressure makes 19F MRI an attractive non-invasive approach to quantify tissue oxygenation in a spatiotemporal manner. However, there are only few materials with the adequate sensitivity to be used as oxygen-sensitive 19F MRI agents at clinically relevant field strengths. Motivated by the limitations in current technologies, we report highly fluorinated monomers that provide a platform approach to realize water-soluble, partially fluorinated copolymers as 19F MRI agents with the required sensitivity to quantify solution oxygenation at clinically relevant magnetic field strengths. The synthesis of a systematic library of partially fluorinated copolymers enabled a comprehensive evaluation of copolymer structure–property relationships relevant to 19F MRI. The highest-performing material composition demonstrated a signal-to-noise ratio that corresponded to an apparent 19F density of 220 mm , which surpasses the threshold of 126 mm 19F required for visualization on a three Tesla clinical MRI. Furthermore, the T1 of these high performing materials demonstrated a linear relationship with solution oxygenation, with oxygen sensitivity reaching 240×10−5 mmHg−1s−1. The relationships between material composition and 19F MRI performance identified herein suggest general structure–property criteria for the further improvement of modular, water-soluble 19F MRI agents for quantifying oxygenation in environments relevant to medical imaging.  相似文献   

11.
A line of the GdIII ion was detected at 311 nm in the multibubble sonoluminescence spectrum of a concentrated (1 mol L−1) solution of gadolinium chloride. A comparison with the earlier studied sonoluminescence of the CeIII and TbIII ions shows that the GdIII ion is excited in the volume and/or on the surface of cavitation bubbles upon collisions with “hot” particles. The efficiency of excitation of the lanthanide ions via this mechanism depends on the type of electron transition. For the same energy of the excited state, the efficiency of GdIII excitation (f-f transition) exceeds by at least 50 times that of CeIII excitation (f-d transition). Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1341–1344, June, 2005.  相似文献   

12.
Structural and Magnetochemical Studies of Ba5Mn3F19 and Related Compounds AII5MIII3F19 Single crystal structure determinations by X‐ray methods were performed at the following compounds, crystallizing tetragonally body‐centred (Z = 4): Sr5V3F19 (a = 1423.4(2), c = 728.9(1) pm), Sr5Cr3F19 (a = 1423.5(2), c = 728.1(1) pm), Ba5Mn3F19 (a = 1468.9(1), c = 770.3(1) pm, Ba5Fe3F19 (a = 1483.5(1), c = 766.7(1) pm), and Ba5Ga3F19 (a = 1466.0(2), c = 760.1(2) pm). Only Ba5Mn3F19 was refined in space group I4cm (mean distances for elongated octahedra Mn1–F: 185/207 pm equatorial/axial; for compressed octahedra Mn2–F: 199/182 pm), the remaining compounds in space group I4/m. In all cases the octahedral ligand spheres of the M1 atoms showed disorder, the [M1F6] octahedra being connected into chains in one part of the compounds and into dimers in the other. The magnetic properties of the V, Cr and Mn compounds named above and of Pb5Mn3F19 and Sr5Fe3F19 as well were studied; the results are discussed in context with the in part problematic structures.  相似文献   

13.
19F magnetic resonance imaging (MRI) is a powerful molecular imaging technique that enables high-resolution imaging of deep tissues without background signal interference. However, the use of nanoparticles (NPs) as 19F MRI probes has been limited by the immediate trapping and accumulation of stiff NPs, typically of around 100 nm in size, in the mononuclear phagocyte system, particularly in the liver. To address this issue, elastic nanomaterials have emerged as promising candidates for improving delivery efficacy in vivo. Nevertheless, the impact of elasticity on NP elimination has remained unclear due to the lack of suitable probes for real-time and long-term monitoring. In this study, we present the development of perfluorocarbon-encapsulated polymer NPs as a novel 19F MRI contrast agent, with the aim of suppressing long-term accumulation. The polymer NPs have high elasticity and exhibit robust sensitivity in 19F MRI imaging. Importantly, our 19F MRI data demonstrate a gradual decline in the signal intensity of the polymer NPs after administration, which contrasts starkly with the behavior observed for stiff silica NPs. This innovative polymer-coated NP system represents a groundbreaking nanomaterial that successfully overcomes the challenges associated with long-term accumulation, while enabling tracking of biodistribution over extended periods.  相似文献   

14.
We present the access to [5-19F, 5-13C]-uridine and -cytidine phosphoramidites for the production of site-specifically modified RNAs up to 65 nucleotides (nts). The amidites were used to introduce [5-19F, 5-13C]-pyrimidine labels into five RNAs—the 30 nt human immunodeficiency virus trans activation response (HIV TAR) 2 RNA, the 61 nt human hepatitis B virus ϵ (hHBV ϵ) RNA, the 49 nt SAM VI riboswitch aptamer domain from B. angulatum, the 29 nt apical stem loop of the pre-microRNA (miRNA) 21 and the 59 nt full length pre-miRNA 21. The main stimulus to introduce the aromatic 19F–13C-spin topology into RNA comes from a work of Boeszoermenyi et al., in which the dipole-dipole interaction and the chemical shift anisotropy relaxation mechanisms cancel each other leading to advantageous TROSY properties shown for aromatic protein sidechains. This aromatic 13C–19F labeling scheme is now transferred to RNA. We provide a protocol for the resonance assignment by solid phase synthesis based on diluted [5-19F, 5-13C]/[5-19F] pyrimidine labeling. For the 61 nt hHBV ϵ we find a beneficial 19F–13C TROSY enhancement, which should be even more pronounced in larger RNAs and will facilitate the NMR studies of larger RNAs. The [19F, 13C]-labeling of the SAM VI aptamer domain and the pre-miRNA 21 further opens the possibility to use the biorthogonal stable isotope reporter nuclei in in vivo NMR to observe ligand binding and microRNA processing in a biological relevant setting.  相似文献   

15.
A series of head-on complexes of lanthanoid containing germanotungstates was isolated from a one pot reaction in an acetate buffer at pH 4.5. This convenient approach brought forward the [{Ln(CH3COO)GeW11O39(H2O)}2]12− (Ln=EuIII, GdIII, TbIII, DyIII, HoIII, ErIII, TmIII, and YbIII) family with acetate chelators in the rarely observed μ2: η2-η1 mode. All compounds were structurally characterized using various solid state analytics, such as single crystal X-ray diffraction, FT-IR spectroscopy, and thermogravimetric analysis. The isostructural polyanions crystallize in the monoclinic system (S.G. P21/c). Temperature-dependent magnetic susceptibility measurements were performed on the GdIII-complex which exhibits near perfect Curie-type behavior.  相似文献   

16.
A family of fluorinated gemini surfactants derived from perfluoropinacol has been synthesized as novel 19F magnetic resonance imaging (19F MRI) agents. These fluorinated surfactants with 12 symmetric fluorine atoms and one singlet 19F MR peak can be conveniently prepared from perfluoropinacol and oligo(ethylene glycols) on multi-gram scales. Solubility, hydrophilicity (log P), and critical micelle concentration (CMC) measurements of these fluorinated surfactants indicated that high aqueous solubility can be achieved by introducing oligo(ethylene glycols) with appropriate length into perfluoropinacol, i.e., manipulating the fluorine content (F%). One of these fluorinated surfactants with high aqueous solubility and excellent 19F MR properties has been identified by 19F MRI phantom experiments as a promising 19F MRI agent.  相似文献   

17.
Novel contrast agents were developed through assembling of GdIII‐containing metallosurfactant (MS) with biocompatible polyelectrolytes sodium hyaluronate (HA), heparinsodium (HS) and dextran sulfate sodium (DSS). The formed polyelectrolyte–surfactant complexes showed different structural patterns as the charge ratio increased, including spherical aggregates, rod‐like aggregates and network patterns in monovalent HA system, while spherical structures emerged in multivalent HS and DSS systems. Energy dispersive spectroscopy analysis and scanning electron microscopy mapping showed the presence of GdIII in these complexes. Inductively coupled plasma atomic emission spectrometry was further used to quantify the contents of GdIII in the assemblies. T1 magnetic resonance imaging showed that these GdIII‐loaded complexes exhibited relaxivity of up to 63.81 mM ?1 s?1, much higher than that of Ominiscan (4.64 mM ?1 s?1). The cytotoxicity test in vitro demonstrated the excellent biocompatibility of these complexes, which is essential for clinical application.  相似文献   

18.
Here, a new amphiphilic magnetic resonance imaging (MRI) contrast agent, a GdIII‐chelated diethylenetriaminepentaacetic acid conjugated to two branched alkyl chains via a dopamine spacer, Gd‐DTPA‐dopamine‐bisphytanyl (Gd‐DTPA‐Dop‐Phy), which is readily capable of self‐assembling into liposomal nanoassemblies upon dispersion in an aqueous solution, is reported. In vitro relaxivities of the dispersions were found to be much higher than Magnevist, a commercially available contrast agent, at 0.47 T but comparable at 9.40 T. Analysis of variable temperature 17O NMR transverse relaxation measurements revealed the water exchange of the nanoassemblies to be faster than that previously reported for paramagnetic liposomes. Molecular reorientation dynamics were probed by 1H NMRD profiles using a classical inner and outer sphere relaxation model and a Lipari–Szabo “model‐free” approach. High payloads of GdIII ions in the liposomal nanoassemblies made solely from the Gd‐DTPA‐Dop‐Phy amphiphiles, in combination with slow molecular reorientation and fast water exchange makes this novel amphiphile a suitable candidate to be investigated as an advanced MRI contrast agent.  相似文献   

19.
We report through‐space (TS) 19F–19F coupling for ortho‐fluoro‐substituted Z ‐azobenzenes. The magnitude of the TS‐coupling constant (TSJFF) ranged from 2.2–5.9 Hz. Using empirical formulas reported in the literature, these coupling constants correspond to non‐bonded F–F distances (dFF) of 3.0–3.5 Å. These non‐bonded distances are significantly smaller than those determined by X‐ray crystallography or density functional theory, which argues that simple models of 19F–19F TS spin–spin coupling solely based dFF are not applicable. 1H, 13C and 19F data are reported for both the E and Z isomers of ten fluorinated azobenzenes. Density functional theory [B3YLP/6‐311++G(d,p)] was used to calculate 19F chemical shifts, and the calculated values deviated 0.3–10.0 ppm compared with experimental values. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
The C-F?M+ interaction in anionic σ-(α-fluorovinyl)rhenium oxycarbene complexes, [RCFCFReC(O)R′(CO)4]M (1-6), M = Na, Li, K is studied by 19F NMR in THF and Et2O. The coordination of α-F to M+ results in an upfield shift of the corresponding 19F NMR signal and a decrease of 1JCF. The maximum shift is found for the Li salt of complex 4 in Et2O (Δδ = 36.4 ppm), in which case a 7Li-19F spin-spin coupling is also observed (JLiF = 40 Hz). The ΔE of C-F?M+ interaction and its effect on 19F shielding was further studied by DFT calculations using β-fluoroenolates as models, which confirmed a strong impact of CF-bond environment on the coordination ability of fluorine in these F,O-chelates. A compound with a β-fluoroenolate backbone but without rhenium, o-(α-fluorovinyl)phenolate 12, was prepared and studied by 19F NMR, and similarly showed indications of C-F?M+ interaction in THF solution. It is concluded that the donor ability of fluorine in the studied system is enhanced because of the conjugation of α-fluorovinyl group with the enolate π-system and back donation from the transition metal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号