首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 878 毫秒
1.
DFT and MP2 to MP4(SDQ) methods were applied to M(PH3)2(C60), Pt(PH3)2(C20H10), and Pt(PH3)2(C21H12) (M = Pd or Pt, C20H10 = corannulene, and C21H12 = sumanene). The binding energy considerably fluctuates around MP2 and MP3 levels but much less upon going from MP3 to MP4(SDQ) in Pt(PH3)2(C2H4), Pt(PH3)2(C20H10), and Pt(PH3)2(C21H12). Also, the MP4(SDQ) method presents a binding energy similar to that of the CCSD(T) method in Pt(PH3)2(C2H4). Thus, it is likely that the MP4(SDQ) method is useful to evaluate binding energies of these complexes. The binding energies of Pt(PH3)2(C20H10) and Pt(PH3)2(C21H12) are evaluated to be 24.9 and 26.1 kcal/mol, respectively, by the MP4(SDQ) method and only +5.8 and -2.6 kcal/mol, respectively, by the DFT(B3LYP) method. These MP4(SDQ)-calculated binding energies of Pt(PH3)2(C20H10) and Pt(PH3)2(C21H12) are similar to that of Pt(PH3)2(C2H4), which strongly suggests that these complexes can be successfully synthesized. The binding energy of Pt(PH3)2(C60) is evaluated to be 44.8 and 45.5 kcal/mol with the ONIOM(MP4(SDQ):UFF) and ONIOM(MP4(SDQ):B3LYP) methods, respectively, and that of the Pd analogue is evaluated to be 39.9 kcal/mol with the ONIOM(MP4(SDQ):UFF) method, whereas the DFT(B3LYP), DFT(BVP86), and DFT(BPW91) methods provide much smaller binding energies. It is noted that these binding energies are much larger than those of the ethylene, corannulene, and sumanene analogues. This difference is reasonably interpreted in terms that the LUMO of C60 is at much lower energy than those of ethylene, corannulene, and sumanene. We investigated also how to separate the high level and the low level regions in the ONIOM calculation of M(PH3)2(C60) and proposed here the reasonable way to evaluate the binding energy of transition-metal complexes of C60.  相似文献   

2.
Stimulated by the recent observation of pi-pi interactions between C60 and corannulene subunits in a molecular tweezer arrangement (J Am Chem Soc 2007, 129, 3842), a density functional theory study was performed to analyze the electronic structure and properties of various noncovalent corannulene complexes. The theoretical approach is first applied to corannulene complexes with a series of benchmark molecules (CH4, NH3, and H2O) using several new-generation density functionals. The performance of nine density functionals, illustrated by computing binding energies of the corannulene complexes, demonstrates that Zhao and Truhlar's MPWB1K and M05-2X functionals provide energies similar to that obtained at the SCS-MP2 level. In contrast, most of the other popular density functionals fail to describe this noncovalent interaction or yield purely repulsive interactions. Further investigations with the M05-2X functional show that the binding energy of C60 with corannulene subunits in the relaxed molecular receptor clip geometry is -20.67 kcal/mol. The results of this calculation further support the experimental interpretation of pure pi-pi interactions between a convex fullerene and the concave surfaces of two corannulene subunits.  相似文献   

3.
A supramolecular binding occurred between lithium ion encapsulated [60]fullerene (Li(+)@C(60)) and sulfonated tetraphenylporphyrins ([MTPPS](4-) M = H(2) and Zn) in a benzonitrile solution. Photoexcitation of Li(+)@C(60)/[MTPPS](4-) results in formation of a long-lived charge-separated state by photoinduced electron transfer.  相似文献   

4.
A range of new functionalised 9,10-bis(1,3-dithiol-2-ylidene)-9,10-dihydroanthracene (TTFAQ) derivatives have been synthesised from the key di(halomethyl) building blocks, 10-[4,5-bis(bromomethyl)-1,3-dithiol-2-ylidene]-anthracene-9(10H)-one 10, 10-[4,5-bis(chloromethyl)-1,3-dithiol-2-ylidene]anthracene-9(10H)-one 11 and 9-[4,5-bis(chloromethyl)-1,3-dithiol-2-ylidene]-10-[4,5-bis(hexylsulfanyl)- 1,3-dithiol-2-ylidene]-9,10-dihydroanthracene 18. A Diels-Alder strategy comprising trapping of the transient exocyclic diene 19, which is derived from 18, with 1,4-naphthoquinone leads to the aromatised TTFAQ anthraquinone system 21. Horner-Wadsworth-Emmons olefination of 21 with the anion generated from reagent 22 gave the fused bis(TTFAQ) structure 23. Pyrrolo-annelated derivatives 30-34 have been obtained in a sequence of reactions from compound 10. Mono-formylation of the pyrrole ring of 32 and 33 under Vilsmeier conditions gave 35 and 36 which upon reaction with 2,4,5,7-tetranitrofluorene gave the donor-pi-acceptor diads 38 and 39. Cyclic voltammetry (CV) in solution for all the TTFAQ derivatives shows the typical quasi-reversible two-electron oxidation wave of the TTFAQ core at potentials which vary slightly depending on the substituents. For example, the value of Eox is raised by the electron withdrawing anthraquinone and tetranitrofluorene units of 21 and 38, respectively. The CV of the conjugated TTFAQ dimer 23 showed two, two-electron oxidation waves corresponding to the sequential formation of 23(2+) and 23(4+) (delta Eox = 130 mV) providing evidence for a significant intramolecular electronic interaction, i.e. the dication 23(2+) acts as a conjugated donor-pi-acceptor diad, thereby raising the oxidation potential of its partner TTFAQ unit. Spectroelectrochemical studies on 23 support this explanation. A strong intramolecular charge transfer band at lambda max 538 nm is seen in the UV-Vis spectra of the TTFAQ-pi-tetranitrofluorene diads 38 and 39. The X-ray crystal structures are reported for compounds 30, 33 and 34. The pyrrolo-TTFAQ moiety adopts a saddle-shape with the central ring of the dihydroanthracene moiety folded along the C(9) ... C(10) vector in each case. Significant intermolecular interactions are observed in the structures.  相似文献   

5.
New endohedral fullerene C(70) encapsulating one and two H(2) molecule(s) has been synthesized by organic reactions, the so-called "molecular surgery" method, and the first organic derivatization of H(2)@C(70) and (H(2))(2)@C(70) has been conducted. Although the interaction between inner H(2) and outer C(70) is rather weak, (H(2))(2)@C(70) exhibits smaller equilibrium constants in the Diels-Alder reaction with 9,10-dimethylanthracene than those of H(2)@C(70).  相似文献   

6.
Anion binding has emerged as an attractive strategy to construct supramolecular electron donor-acceptor complexes. In recent years, the level of sophistication in the design of these systems has advanced to the point where it is possible to create ensembles that mimic key aspects of the photoinduced electron-transfer events operative in the photosynthetic reaction centre. Although anion binding is a reversible process, kinetic studies on anion binding and dissociation processes, as well as photoinduced electron-transfer and back electron-transfer reactions in supramolecular electron donor-acceptor complexes formed by anion binding, have revealed that photoinduced electron transfer and back electron transfer occur at time scales much faster than those associated with anion binding and dissociation. This difference in rates ensures that the linkage between electron donor and acceptor moieties is maintained over the course of most forward and back electron-transfer processes. A particular example of this principle is illustrated by electron-transfer ensembles based on tetrathiafulvalene calix[4]pyrroles (TTF-C4Ps). In these ensembles, the TTF-C4Ps act as donors, transferring electrons to various electron acceptors after anion binding. Competition with non-redox active substrates is also observed. Anion binding to the pyrrole amine groups of an oxoporphyrinogen unit within various supramolecular complexes formed with fullerenes also results in acceleration of the photoinduced electron-transfer process but deceleration of the back electron transfer; again, this is ascribed to favourable structural and electronic changes. Anion binding also plays a role in stabilizing supramolecular complexes between sulphonated tetraphenylporphyrin anions ([MTPPS](4-): M = H(2) and Zn) and a lithium ion encapsulated C(60) (Li(+)@C(60)); the resulting ensemble produces long-lived charge-separated states upon photoexcitation of the porphyrins.  相似文献   

7.
This work highlights the progress made in coordination chemistry of transition-metal centers to open geodesic polyaromatic hydrocarbons that map onto the surface of C60, the family of compounds known as buckybowls or 'fullerene fragments'. In particular, an overview of our recent gas-phase coordination studies of several bowl-shaped polyarenes toward the dinuclear metal complex, [Rh2(O2CCF3)4], is given. Selected buckybowls include corannulene (C20H10) and two of its derivatives, namely dibenzo[a,g]corannulene (C28H14) and 1,3,5,7,9-penta-tert-butylcorannulene (C40H50), as well as a hemifullerene (C30H12). This study has resulted in the first X-ray structural characterization of buckybowl coordination complexes and has revealed eta2-rim coordination preferences of open geodesic polyarenes in rhodium(ii) binding reactions.  相似文献   

8.
Quantum-chemical calculations using DFT (BP86) and ab initio methods (MP2, SCS-MP2) have been carried out for the endohedral fullerenes Ng2@C60 (Ng=He-Xe). The nature of the interactions has been analyzed with charge- and energy-partitioning methods and with the topological analysis of the electron density (Atoms-in-Molecules (AIM)). The calculations predict that the equilibrium geometries of Ng2@C60 have D3d symmetry when Ng=Ne, Ar, Kr, while the energy-minimum structure of Xe2@C60 has D5d symmetry. The precession movement of He2 in He2@C60 has practically no barrier. The Ng--Ng distances in Ng2@C60 are much shorter than in free Ng2. All compounds Ng2@C60 are thermodynamically unstable towards loss of the noble gas atoms. The heavier species Ar2@C60, Kr2@C60, and Xe2@C60 are high energy compounds which are at the BSSE corrected SCS-MP2/TZVPP level in the range 96.7-305.5 kcal mol(-1) less stable than free C60+2 Ng. The AIM method reveals that there is always an Ng--Ng bond path in Ng2@C60. There are six Ng--C bond paths in (D3d) Ar2@C60, Kr2@C60, and Xe2@C60, whereas the lighter D3d homologues He2@C60 and Ne2@C60 have only three Ng--C2 paths. The calculated charge distribution and the orbital analysis clearly show that the bonding situation in Xe2@C60 significantly differs from those of the lighter homologues. The atomic partial charge of the [Xe2] moiety is +1.06, whereas the charges of the lighter dimers [Ng2] are close to zero. The a2u HOMO of (D3d) Xe2@C60 in the 1A1g state shows a large mixing of the highest lying occupied sigma* orbital of [Xe2] and the orbitals of the C60 cage. There is only a small gap between the a2u HOMO of Xe2@C60 and the eu LUMO and the a2u LUMO+1. The calculations show that there are several triplet states which are close in energy to each other and to the 1A1g state. The bonding analysis suggests that the interacting species in Xe2@C60 are the charged species Xe2q+ and C60q-, where 1相似文献   

9.
An exhaustive computational study at the M05-2X/cc-pVDZ level which explores the binding possibilities of cations (Li(+), Na(+), K(+) and Cu(+)) to the concave and convex sides of the hub and rim rings of prototypical buckybowls, sumanene (C(21)H(12)) and corannulene (C(20)H(10)), has been carried out. Five distinct minima on the potential energy surface of sumanene and four on the potential energy surface of corannulene were identified. The complex where the metal ion binds to the convex side of the 6-membered rim ring is adjudged as the most stable complex for both the bowls considered. The cation-π interaction energies of buckybowls are compared with model systems such as benzene, cyclopentadiene, indene and coronene. Energy decomposition analysis has also been performed to delineate the contribution from various components contributing to the cation-π binding strength.  相似文献   

10.
Pentakis(1,4-benzodithiino)corannulene (6) in CS2 formed the strongest 1:1 complexes with C60 and C70 of any corannulene derivative yet reported. The 1,3,5,7,9-pentakis(propylthio)corannulene (4b) formed weaker 1:1 complexes with C60 and C70 in CS2, whereas the decakis(propylthio)corannulene (5b) and unsubstituted corannulene (1) showed no evidence for complexation with either C60 or C70 in CS2.  相似文献   

11.
Unprecedented supramolecular stacks of highly reduced geodesic pi-systems were prepared by the reduction of the derivatized fullerenes Me(5)C(60)H and Ph(5)C(60)H and corannulene with lithium metal (R(5)C(60)(5)(-)/Cor(4)(-)/9Li(+)). The host--guest assemblies form because of the enhanced electrostatic interactions between the lithium cations and the anionic moieties, in addition to the structural compatibility between the curved hydrocarbons. The high stability of these new supramolecular assemblies (heterodimers) enables the introduction of another organization motif to the system. This is achieved by using tethered corannulenes as host molecules, which leads to the formation of tethered bis-heterodimers ((Me(5)C(60)(5)(-)/Cor(4)(-))(2)(CH(2))(8)/18Li(+)).  相似文献   

12.
Stabilisation energies of stacked structures of C(6)H(6)...C(6)X(6) (X = F, Cl, Br, CN) complexes were determined at the CCSD(T) complete basis set (CBS) limit level. These energies were constructed from MP2/CBS stabilisation energies and a CCSD(T) correction term determined with a medium basis set (6-31G**). The former energies were extrapolated using the two-point formula of Helgaker et al. from aug-cc-pVDZ and aug-cc-pVTZ Hartree-Fock energies and MP2 correlation energies. The CCSD(T) correction term is systematically repulsive. The final CCSD(T)/CBS stabilisation energies are large, considerably larger than previously calculated and increase in the series as follows: hexafluorobenzene (6.3 kcal mol(-1)), hexachlorobenzene (8.8 kcal mol(-1)), hexabromobenzene (8.1 kcal mol(-1)) and hexacyanobenzene (11.0 kcal mol(-1)). MP2/SDD** relativistic calculations performed for all complexes mentioned and also for benzene[dot dot dot]hexaiodobenzene have clearly shown that due to relativistic effects the stabilisation energy of the hexaiodobenzene complex is lower than that of hexabromobenzene complex. The decomposition of the total interaction energy to physically defined energy components was made by using the symmetry adapted perturbation treatment (SAPT). The main stabilisation contribution for all complexes investigated is due to London dispersion energy, with the induction term being smaller. Electrostatic and induction terms which are attractive are compensated by their exchange counterparts. The stacked motif in the complexes studied is very stable and might thus be valuable as a supramolecular synthon.  相似文献   

13.
Density functional theory (DFT) based theoretical calculations are performed to identify the ground-state geometries, the spin multiplicities, and the relevant energetics of neutral and positively charged Fe-corannulene complexes. Our calculations show that the on-top site of the six-membered ring (eta(6)) of corannulene molecule is the most preferred binding site for both Fe atom and Fe(+) ion. The electrostatic potential (ESP) surface picture is employed to explain the preference of the eta(6)- over the eta(5)-binding site (on-top site of central pentagon) of corannulene. Though in both neutral and cationic species the eta(6)-site is the most preferred binding site, the ground-state geometries of these complexes are different. The Fe(+) cation prefers to bind to the convex face of the corannulene, whereas the neutral Fe atom prefers slightly the concave to the convex face. The ionization-induced structural changes are reflected in the large energy difference between the vertical and adiabatic ionization potential values. We also show that the dissociation of Fe(+)-corannulene complex to corannulene + Fe(+) is just as likely as that to Fe + (corannulene)(+).  相似文献   

14.
The quenching rate constants of singlet oxygen by C60, H2@C60, D2@C6o, H2, and D2 in solution were measured. The presence of a hydrogen (H2@C60) or deuterium (D2@C60) molecule inside the fullerene did not produce any observable effect based on triplet lifetime or EPR measurements. However, a remarkable effect was found for the 1O2 quenching by C60, H2@C60, D2@C6o, H2, and D2. Singlet oxygen was generated by photosensitization or by thermal decomposition of naphthalene endoperoxide derivatives. Comparison of the rate constants for quenching of 1O2 by H2@C60 and D2@C60 demonstrates a significant vibrational interaction between oxygen and H2 inside the fullerene. The quenching rate constant for H2 is 1 order of magnitude higher than that of D2, in agreement with the results observed for the quenching of 1O2 with H2@C60 or D2@C60.  相似文献   

15.
Density functional theory and classical molecular dynamics simulations are used to investigate the prospect of lithium-doped corannulene as adsorbent material for H(2) gas. Potential energy surface scans at the level of B3LYP/6-311G(d,p) show an enhanced interaction of molecular hydrogen with lithium-atom-doped corannulene complexes with respect to that found in undoped corannulene. MP2(FC)/6-31G(d,p) optimizations of 4H(2)-(Li(2)-C(20)H(10)) yield H(2) binding energies of -1.48 kcal/mol for the H(2)-Li interaction and -0.92 kcal/mol for the H(2)-C interaction, whereas values of -0.94 and -0.83 kcal/mol were reported (J. Phys. Chem. B 2006, 110, 7688-7694) for physisorption of H(2) on the concave and the convex side of corannulene using MP2(full)/6-31G(d), respectively. Classical molecular dynamics simulations predict hydrogen uptakes in Li-doped corannulene assemblies that are significantly enhanced with respect to that found in undoped molecules, and the hydrogen uptake ability is dependent on the concentration of lithium dopant. For the Li(6)-C(20)H(10) complex, a hydrogen uptake of 4.58 wt % at 300 K and 230 bar is obtained when the adsorbent molecules are arranged in stack configurations separated by 6.5 A, and with interlayer distances of 10 A, hydrogen uptake reaches 6.5 wt % at 300 K and 215 bar.  相似文献   

16.
High-level ab initio calculations at the CCSD(T)/aug-cc-pVTZ//MP2/aug(d,p)-6-311G(d,p) level were employed to investigate the cooperative CH/pi effects between the pi face of benzene and several modeled saturated hydrocarbons, propane, isobutane, cyclopropane, cyclobutane, cyclopentane, cyclohexane, cyclopentane, cyclooctane, and bicyclo[2.2.2]octane. In all cases, multiple C-H groups (2-4) are found to interact with the pi face of benzene, with one C-H group pointing close to the center of the benzene ring. The geometries of these complexes are governed predominantly by electrostatic interaction between the interacting systems. The calculated interaction energies (10-14 kJ mol(-1)) are 2-3 times larger than that of the prototypical methane-benzene complex. The trends of geometries, interaction energies, binding properties, as well as electron-density topological properties were analyzed. The calculated interaction energies correlate well with the polarizabilities of the hydrocarbons. AIM analysis confirms the hydrogen-bonded nature of the CH/pi interactions. Significant changes in proton chemical shift and stretching frequency (blue shift) are predicted for the ring C-H bond in these complexes.  相似文献   

17.
Three-center four-electron (3c4e) pi bonding systems analogous to that of the ozone molecule have been studied using modern valence bond theory. Molecules studied herein consist of combinations of first row atoms C, N, and O with the addition of H atoms where appropriate in order to preserve the 3c4e pi system. Breathing orbital valence bond (BOVB) calculations were preformed at the B3LYP/6-31G**-optimized geometries in order to determine structural weights, pi charge distributions, resonance energies, and pi bond energies. It is found that the most weighted VB structure depends on atomic electronegativity and charge distribution, with electronegativity as the dominant factor. By nature, these systems are delocalized, and therefore, resonance energy is the main contributor to pi bond energies. Molecules with a single dominant VB structure have low resonance energies and therefore low pi bond energies.  相似文献   

18.
Spectroscopic properties of a ground state nonbonded porphine-buckminsterfullerene (H2P...C60) complex are studied in several different relative orientations of C60 with respect to the porphine plane by using the density functional (DFT) and time-dependent density functional (TDDFT) theories. The geometries and electronic structures of the ground states are optimized with the B3LYP and PBE functionals and a SVP basis set. Excitation energies and oscillator strengths are obtained from the TDDFT calculations. The relative orientation of C60 is found to affect the equilibrium distance between H2P and C60 especially in the case of the PBE functional. The excitation energies of different H2P...C60 complexes are found to be practically the same for the same excitations when the B3LYP functional is used but to differ notably when PBE is used in calculations. Existence of the states related to a photoinduced electron transfer within a porphyrin-fullerene dyad is also studied. All calculations predict a formation of an excited charge-transfer complex state, a locally excited donor (porphine) state, as well as a locally excited acceptor (fullerene) state in the investigated H2P...C60 complexes.  相似文献   

19.
The C - H bond dissociation energies for naphthalene were determined using a negative ion thermochemical cycle involving the gas-phase acidity (Delta H (acid)) and electron affinity (EA) for both the alpha- and beta-positions. The gas-phase acidity of the naphthalene alpha- and beta-positions and the EAs of the alpha- and beta-naphthyl radicals were measured in the gas phase in a flowing after glow-triple quadrupole apparatus. A variation of the Cooks kinetic method was used to measure the EAs of the naphthyl radicals by collision-induced dissociation of the corresponding alpha- and beta-naphthylsulfinate adducts formed by reactions in the flow tube portion of the instrument. Calibration references included both pi and sigma radicals, and full entropy analysis was performed over a series of calibration curves measured at collision energies ranging from 3.5 to 8 eV (center-of-mass). The measured EAs are 33.0 +/- 1.4 and 31.4 +/- 1.0 kcal mol(-1) (1 kcal = 4.184 kJ) for the alpha- and beta-naphthyl radicals, respectively. The gas-phase acidities for naphthalene were measured by the DePuy silane cleavage method, which utilizes the relative abundances of aryldimethylsiloxides and trimethylsiloxide that result from competitive cleavages from a proposed penta coordinate hydroxysiliconate intermediate. The measured acidities are 394.0 +/- 5.0 and 397.6 +/- 4.8 kcal mol(-1) for the alpha- and beta- positions, respectively. The C - H bond dissociation energies calculated from the thermochemical cycle are 113.4 +/- 5.2 and 115.4 +/- 4.9 kcal mol(-1) for the alpha- and beta-positions, respectively. These energies are, to within experimental error, indistinguishable and are approximately the same as the first bond dissociation energy for benzene.  相似文献   

20.
Substitution of the peripheral H atoms in the corannulene molecule as a carbon nanostructure by OH, CH3, NH2 and NO2 groups on the molecular hydrogen physisorption was evaluated at MP2/6-31G(d) level of theory. Two orientations of hydrogen were used on the concave and convex sides of corannulene. It was seen that binding to the concave face is favored relative to the convex face. The average binding energy was calculated and corrected for the basis set superposition error (BSSE) using the counterpoise method. Results showed that binding energy varies depending upon the site and side of absorption. The electronic density, charge transfer and spatial prohibition of the substituted groups affects the binding energy. The increment of the electronic density because of the substitution of electron donor groups facilitates hydrogen adsorption and leads to larger binding energies than when H atoms are substituted by electron acceptor groups. Substitution of H atoms with each of the considered groups leads to decreasing of the HOMO–LUMO energy gap and so decreasing of the kinetic stability and increasing of the reactivity. The energy gap and binding energy for corannulene derivatives decreases in the order of: CH3 > OH > NH2 > NO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号