首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanical behavior of ideal truss lattice materials is controlled by the so-called direct action mechanism at the microscale which involves the uniform stretching and compressing of individual truss members. Standard homogenization techniques have been employed to develop a general micromechanics-based finite-strain constitutive model for truss lattice materials. Furthermore, a specialized small-strain plasticity model has been derived. Both models have been implemented in a finite-element program and used to simulate the anisotropic plastic behavior of the octet-truss lattice material in various applications including cyclic uniaxial loading, pure shear, and three-point bending. The constitutive model predictions agree well with the results obtained from discrete finite element models. Regarding the plasticity of the octet-truss lattice material, it has been found that the elastic domain is constrained by twelve pairwise parallel hyperplanes in the six-dimensional stress space. Moreover, the mechanism-based small-strain formulation reveals that the direction of plastic flow is normal to the pressure-dependent macroscopic yield surfaces.  相似文献   

2.
Finite deformation rigid plastic and elastic–plastic analyses of plane strain pure bending of a plastically anisotropic sheet is presented. An efficient method for finding the exact solution is proposed by extending the previously developed method to the stage of unloading. Using this method the solutions are obtained in closed form or reduced to a numerical treatment of ordinary integrals, or an ordinary differential equation, or transcendental equations. An effect of plastic anisotropy and elastic properties on the bending moment is analyzed. The distribution of residual stresses is illustrated and an effect of material and process parameters on springback is investigated.  相似文献   

3.
The elastoplastic pure bending problem of a curved beam with material inhomo- geneity is investigated based on Tresca's yield criterion and its associated flow rule. Suppose that the material is elastically isotropic, ideally elastic-plastic and its elastic modulus and yield limit vary radially according to exponential functions. Closed-form solutions to the stresses and radial displacement in both purely elastic stress state and partially plastic stress state are presented. Numerical examples reveal the distinct characteristics of elastoplastic bending of a curved beam composed of inhomogeneous materials. Due to the inhomogeneity of materials, the bearing capac- ity of the curved beam can be improved greatly and the initial yield mode can also be dominated. Closed-form solutions presented here can serve as benchmark results for evaluating numerical solutions.  相似文献   

4.
胡寒  聂国隽 《力学季刊》2015,36(4):662-670
假设功能梯度材料为理想弹塑性材料,其屈服强度和弹性模量均沿梁的高度方向按任意光滑函数连续变化,在小变形及平截面假定下,导出了功能梯度材料纯弯曲梁弹性极限弯矩及塑性极限弯矩的解析表达式,建立了弹塑性应力状态下截面弯矩和截面的弹、塑性应力分布之间的解析关系.研究表明,功能梯度材料梁存在多种可能的屈服模式,其最先屈服的点不一定位于截面应力最大处,而可能位于截面的其他任意位置;屈服强度及弹性模量的梯度变化对梁的弹塑性力学性能有很大影响.研究结果可为功能梯度材料纯弯曲梁的弹塑性问题研究提供一定的参考.  相似文献   

5.
This paper is concerned with the hysteretic behavior of a prismatic bar subjected to repeated axial loading. Elastic-perfectly plastic behavior is assumed in the analysis under the combined action of axial force and bending moment. The fully plastic states in pure bending and in pure tension and compression are bilinearly interpolated to serve as the yield condition; linearly interacted regimes are combined with interactionless regimes of pure bending to form the yield hexagon, which is a modification of a previously assumed yield quadrangle. Basic equations are derived through the analysis, expressed in a simple analytic closed form, and are able to determine the load-deformation relationship of the bar for any specified history of axial loading.As a result of the analysis it follows that due to the load cycle of tension and compression an initially straight and plastically bent bar undergoes a plastic extension upon the recovery of the straight configuration. This is the balanced axial deformation at a yield hinge between extension and contraction, taking place during the cycle of hinge rotation. Another characteristic feature found is that cyclic alternate displacement loading with large amplitude leads to a steady state after some repeated deterioration of processes. Comparison is made of the load-axial displacement relation between the analytical and experimental results to show reasonable agreement, with discussions extended to the appropriateness of the form of the yield condition.  相似文献   

6.
The paper focuses on wrinkling of lined pipes (sometimes referred to as clad pipes) under bending loading, where a corrosion-resistant thin-walled liner is fitted inside a carbon–steel outer pipe. The problem is solved numerically, using nonlinear finite elements to simulate liner pipe deformation and its interaction with the outer pipe. Stresses and strains are monitored throughout the deformation stage, detecting possible detachment of the liner from the outer pipe and the formation of wrinkles. The wrinkling behavior of elastic and elastic–plastic (steel) lined pipes under bending is examined. The results indicate that the lateral confinement of the liner pipe due to the deformable outer pipe and its interaction with the outer pipe has a decisive influence on the wrinkling behavior of the lined pipe. It is also shown that the behavior is characterized by a first bifurcation in a uniform wrinkling pattern, followed by a secondary bifurcation. The values of corresponding buckling curvature are determined and comparison with available experimental results is conducted in terms of wrinkle height development and the corresponding buckling wavelength. The results of the present research can be used for safer design of lined pipes in pipeline applications.  相似文献   

7.
Electrospinning is a novel method for creating non-woven polymer mats that have high surface area and high porosity. These attributes make them ideal candidates for multifunctional composites. Understanding the mechanical properties as a function of fiber properties and mat microstructure can aid in designing these composites. Further, a constitutive model which captures the membrane stress–strain behavior as a function of fiber properties and the geometry of the fibrous network would be a powerful design tool. Here, mats electrospun from amorphous polyamide are used as a model system. The elastic–plastic behavior of single fibers are obtained in tensile tests. Uniaxial monotonic and cyclic tensile tests are conducted on non-woven mats. The mat exhibits elastic–plastic stress–strain behavior. The transverse strain behavior provides important complementary data, showing a negligible initial Poisson's ratio followed by a transverse:axial strain ratio greater than ?1:1 after an axial strain of 0.02. A triangulated framework has been developed to emulate the fibrous network structure of the mat. The micromechanically based model incorporates the elastic–plastic behavior of single fibers into a macroscopic membrane model of the mat. This representative volume element based model is shown to capture the uniaxial elastic–plastic response of the mat under monotonic and cyclic loading. The initial modulus and yield stress of the mat are governed by the fiber properties, the network geometry, and the network density. The transverse strain behavior is linked to discrete deformation mechanisms of the fibrous mat structure including fiber alignment, fiber bending, and network consolidation. The model is further validated in comparison to experiments under different constrained axial loading conditions and found to capture the constraint effect on stiffness, yield, post-yield hardening, and post-yield transverse strain behavior. Due to the direct connection between microstructure and macroscopic behavior, this model should be extendable to other electrospun systems and other two dimensional random fibrous networks.  相似文献   

8.
9.
The paper examines the plastic bending of steel tubes exhibiting Lüders bands through a combination of experiments and analyses. In pure bending experiments on tubes with diameter-to-thickness ratio of 18.8 tested under end-rotation control, following the elastic regime the moment initially traced a somewhat ragged plateau. At the beginning of the plateau Lüders bands appeared on the tension and compression sides of the cross section and simultaneously the curvature localized in one or two short zones while the rest of the tube maintained a much lower curvature. As the rotation of the ends was increased, one of the higher curvature zones spread at a nearly steady rate, affecting an increasingly larger part of the tube. When the whole tube was deformed to the higher curvature, the moment started to gradually increase while the tube deformed uniformly. A moment maximum was eventually attained and the structure failed by localized diffuse ovalization without any apparent effect from the initial Lüders bands-induced propagating instability. The problem was analyzed using 3D finite elements with a fine mesh. The material was modeled as an elastic–plastic solid with an up–down–up response over the extent of the Lüders strain, followed by hardening. The calculated response reproduced all major structural events observed experimentally including the initiation of the Lüders deformation, the moment plateau that followed, its extent, and the curvature localization and propagation associated with it. As in the experiments, once the high curvature extended over the whole tube length, the response of the tube became stable and the curvature uniform. With further bending the increasing ovalization induced a limit moment at a very high curvature.  相似文献   

10.
Plane strain analytical solutions to estimate purely elastic, partially plastic and fully plastic deformation behavior of rotating functionally graded (FGM) hollow shafts are presented. The modulus of elasticity of the shaft material is assumed to vary nonlinearly in the radial direction. Tresca’s yield criterion and its associated flow rule are used to formulate three different plastic regions for an ideal plastic material. By considering different material compositions as well as a wide range of bore radii, it is demonstrated in this article that both the elastic and the elastoplastic responses of a rotating FGM hollow shaft are affected significantly by the material nonhomogeneity.  相似文献   

11.
The paper deals with joint element model used in crashworthiness simulations. The first part of the paper is dedicated to the formulation of a new “global” finite element for spotweld modelling. The mechanical behaviour of the joint is elastic–plastic type and damage is taken into account to model the failure of the welded area. The second part of the paper concerns a new experimental procedure for joint strength analysis in pure and mixed modes I/II and for joint model characterisation. Experiment is based on Arcan principle and results are compared to open literature. In the last part of the paper, the parameters of the new joint model are identified using experiments and used for several shapes of spot-welded specimens. The model predicts reasonably the elastic–plastic part of the response but is unable to predict the post-peak response observed especially in the case of pure shear.  相似文献   

12.
Thepressure-shear plate impact technique is used to study material behavior at high rates of deformation. In this technique, plastic waves of combined pressure and shear stresses are produced by impact of parallel plates skewed relative to their direction of approach. Commercially pure alpha-titanium and 6061-T6 aluminum are tested under a variety of pressure and shear tractions by using different combinations of impact velocities and angles of inclination. A laser interferometer system is used to monitor simultaneously the normal and transverse components of motion of a point at the rear surface of the target plate. The experimental results are compared with numerical solutions based on an elastic/viscoplastic model of the material. Both isotropic and kinematic strain hardening models are used in the computations. The results indicate that unlike the normal velocity profiles, the transverse velocity profiles are sensitive to the dynamic plastic response and, thus, can be used to study material behavior at high strain rates. For the materials tested the results suggest that the flow stress required for plastic straining increases markedly with increasing strain rate at strain rates above 104s?1. Hydrostatic pressure of the order that exists in the tests (up to 2 GPa) does not affect the plastic flow in 6061-T6 aluminum and appears to have at most a minor effect on the deformation of the titanium.  相似文献   

13.
薄壁管材在等曲率矫直生产中,塑性失稳临界曲率半径作为重要的工艺参数,直接决定了设备结构和产品质量。而目前现场仍沿用经验图表结合人工经验和反复试矫对其进行估定,亟待建立针对性的临界曲率半径数学模型以指导生产。在力学建模和分析时,就是确定具有初始曲率的圆柱壳体在纯弯曲条件下塑性失稳的临界曲率半径,为此从旋转壳体一般几何方程出发,基于J2形变理论和能量理论,运用里茨法建立了圆柱壳体在纯弯曲条件下塑性失稳时的临界弯矩,以此确定了临界曲率半径模型,并给出了数值解法。应用ANSYS/LS-DYNA进行了有限元动态仿真试验,证明了模型是近似正确的,并通过仿真对比分析证明了轴向起皱先于截面畸变是圆柱壳体在纯弯曲条件下塑性失稳的主要模态。  相似文献   

14.
This paper suggests some new evaluations for multiaxial-stress properties of ceramic materials. These evaluations include some that have been used for other kinds of materials, as well as others which have not been previously employed. In some cases, these methods represent modifications of existing evaluations. The paper is confined to macroscopic behavior based upon bulk laboratory specimens. The influences of volume, stress gradients and localized behavior are not considered here since considerable attention has recently been devoted to these questions. The important problem of fracture strength will not be considered since this property appears to be considerably influenced by localized microscopic behavior. However, new evaluations of remaining mechanical properties for states of combined stresses will be presented. These include elastic and plastic strength, stiffness, ductility, resilience and toughness. Emphasis on combined-stress properties was selected since recent critical reviews indicate the need for for such an evaluation. Part A of this paper outlines new experiments that are needed to evaluate the mechanical properties and to confirm theories proposed in Part B. In Part B of this paper, new macroscopic engineering-type theories for combined-stress behavior are presented for the first time. These theories attempt to predict combined-stress behavior from uniaxial tension and compression (or pure bending and compression) behavior. These theories provide for materials such as ceramics with different properties in tension and compression. A final section of this presentation is devoted to improvements in the evaluations of other mechanical properties of materials as related to high-temperature creep and fatigue properties.  相似文献   

15.
Elastic layers bonded to rigid surfaces have widely been used in many engineering applications. It is commonly accepted that while the bonded surfaces slightly influence the shear behavior of the layer, they can cause drastic changes on its compressive and bending behavior. Most of the earlier studies on this subject have been based on assumed displacement fields with assumed stress distributions, which usually lead to “average” solutions. These assumptions have somehow hindered the comprehensive study of stress/displacement distributions over the entire layer. In addition, the effects of geometric and material properties on the layer behavior could not be investigated thoroughly. In this study, a new formulation based on a modified Galerkin method developed by Mengi [Mengi, Y., 1980. A new approach for developing dynamic theories for structural elements. Part 1: Application to thermoelastic plates. International Journal of Solids and Structures 16, 1155–1168] is presented for the analysis of bonded elastic layers under their three basic deformation modes; namely, uniform compression, pure bending and apparent shear. For each mode, reduced governing equations are derived for a layer of arbitrary shape. The applications of the formulation are then exemplified by solving the governing equations for an infinite-strip-shaped layer. Closed form expressions are obtained for displacement/stress distributions and effective compression, bending and apparent shear moduli. The effects of shape factor and Poisson’s ratio on the layer behavior are also investigated.  相似文献   

16.
Adhesive contact between a rigid sphere and an elastic film on an elastic–perfectly plastic substrate was examined in the context of finite element simulation results. Surface adhesion was modeled by nonlinear springs obeying a force-displacement relationship governed by the Lennard–Jones potential. A bilinear cohesive zone law with prescribed cohesive strength and work of adhesion was used to simulate crack initiation and growth at the film/substrate interface. It is shown that the unloading response consists of five sequential stages: elastic recovery, interface damage (crack) initiation, damage evolution (delamination), film elastic bending, and abrupt surface separation (jump-out), with plastic deformation in the substrate occurring only during damage initiation. Substrate plasticity produces partial closure of the cohesive zone upon full unloading (jump-out), residual tensile stresses at the front of the crack tip, and irreversible downward bending of the elastic film. Finite element simulations illustrate the effects of minimum surface separation (i.e., maximum compressive surface force), work of adhesion and cohesive strength of the film/substrate interface, substrate yield strength, and initial crack size on the evolution of the surface force, residual deflection of the elastic film, film-substrate separation (debonding), crack-tip opening displacement, and contact instabilities (jump-in and jump-out) during a full load–unload cycle. The results of this study provide insight into the interdependence of contact instabilities and interfacial damage (cracking) encountered in layered media during adhesive contact loading and unloading.  相似文献   

17.
Following a previous paper by the author [Strain gradient plasticity, strengthening effects and plastic limit analysis, Int. J. Solids Struct. 47 (2010) 100–112], a nonconventional plastic limit analysis for a particular class of micron scale structures as, typically, thin foils in bending and thin wires in torsion, is here addressed. An idealized rigid-perfectly plastic material is considered, which is featured by a strengthening potential degree-one homogeneous function of the effective plastic strain and its spatial gradient. The nonlocal (gradient) nature of the material resides in the inherent strengthening law, whereby the yield strength is related to the effective plastic strain through a second order PDE with associated higher order boundary conditions. The peculiarity of the considered structures stems from their geometry and loading conditions, which dictate the shape of the collapse mechanism and make the higher order boundary conditions on the (microscopically) free boundary be accommodated by means of a boundary singularity mechanism. This consists in the formation of thin boundary layers with unbounded stresses, but bounded stress resultants which —together with the regular bulk stresses— contribute to the value of the collapse load. Closed-form solutions are provided for thin foils in pure bending and thin wires in pure torsion, and in particular the limit bending and torque moments are given as functions of an adimensionalized internal length parameter.  相似文献   

18.
In this paper, we present an experimental study on plastic deformation and damage of polycrystalline pure HCP Ti, as well as modeling of the observed behavior. Mechanical characterization data were conducted, which indicate that the material is orthotropic and displays tension-compression asymmetry. The ex-situ and in-situ X-ray tomography measurements conducted reveal that damage distribution and evolution in this HCP Ti material is markedly different than in a typical FCC material such as copper. Stewart and Cazacu (2011) anisotropic elastic/plastic damage model is used to describe the behavior. All the parameters involved in this model have a clear physical significance, being related to plastic properties, and are determined from very few simple mechanical tests. It is shown that this model predicts correctly the anisotropy in plastic deformation, and its strong influence on damage distribution and damage accumulation. Specifically, for a smooth axisymmetric specimen subject to uniaxial tension, damage initiates at the center of the specimen, and is diffuse; the level of damage close to failure being very low. On the other hand, for a notched specimen subject to the same loading the model predicts that damage initiates at the outer surface of the specimen, and further grows from the outer surface to the center of the specimen, which corroborates with the in-situ tomography data.  相似文献   

19.
In the recent codes for the design of steel structures, the elastic–plastic methods of analysis are recognised to provide an efficient estimation of the ultimate resistance of some of these structures. These methods are usually based on some basic hypotheses, such as the creation of plastic hinges in the most stressed cross-sections, for instance.As the development of these plastic hinges depends on the interaction between the internal forces and on the cross-section shape, specific equations are required for the analysis of different types of cross-sections. However, most frequently, these equations are not available, or they are expressed by means of simplified expressions; this is usually the case when biaxial bending is involved.This paper presents new interaction criteria for the analysis of steel rectangular hollow sections subjected to an axial force and biaxial bending moments, at the elastic or the plastic limit states (as long as buckling phenomena are not involved). The plastic interaction criteria are presented, in a first step, for some particular combinations of the internal forces, such as axial loading with bending about a main axis, and biaxial bending without axial loading. Then, the global solution for the simultaneous combination of an axial force and bending moments about both the main axes of inertia are described in detail. All these plastic interaction criteria are compared with the corresponding plastic criteria adopted in the Eurocode 3 (EC3). Some suggestions are presented in order to improve the results given by these EC3 criteria.  相似文献   

20.
This paper focuses on the elastic–plastic flexural characteristics of hybrid members comprising I-section steel beams with adhesively bonded fiber reinforced composite (FRC) laminates. Specifically, predictive models are presented for the shear-bond stresses developed within the adhesive layer. The asymmetry of the hybrid section, due to the presence of the laminate, is shown to have two important consequencies, namely that two parameters are required to fully define the elastic–plastic behavior, and that there is a progressive migration of the neutral axis towards the laminate as elastic–plastic flexure of the section increases. Five different phases of elastic–plastic flexure are identified. Analytically exact two-parameter predictive models, which incorporate the nomadic tendencies of the neutral axis, are derived for the shear-bond stresses associated with each phase. The models reveal that, in contrast to fully elastic flexure, shear-bond stress is nonlinearly proportional to shear force during elastic–plastic behavior. Predictions from the models are compared with test data from the laboratory and with predictions from a finite element program, for FRC-laminated I-section steel beams under both distributed loads and point loads. These comparisons show that two elastic–plastic phases, each defined by axial stress redistribution within the tension steel flange, stimulate rapidly varying shear-bond stresses in the adhesive. The capabilities of the models are highlighted, and areas open for further work are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号