首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The computational study of the combined effects of radiation and hydromagnetics on the natural convection flow of a viscous,incompressible,and electrically conducting fluid past a magnetized permeable vertical plate is presented.The governing non-similar equations are numerically solved by using a finite difference method for all values of the suction parameter ξ and the asymptotic solution for small and large values of ξ.The effects of varying the Prandtl number P r,the magnetic Prandtl number P r m,the magnetic force parameter S,the radiation parameter R d,and the surface temperature θ w on the coefficients of the skin friction,the rate of heat transfer,and the current density are shown graphically and in tables.An attempt is made to examine the effects of the above mentioned physical parameters on the velocity profile,the temperature distribution,and the transverse component of the magnetic field.  相似文献   

2.
The free convection flow along a vertical porous plate with transverse sinusoidal suction velocity distribution is investigated. Due to this type of suction velocity at the plate the flow becomes three dimensional one. For the asymptotic flow condition, the wall shear stress in the direction of main flow for different values of buoyancy parameter G is obtained. For G=0, the skin friction in the direction of free stream and the rate of heat transfer from the plate to the fluid are given. It is found that these results differ from those obtained by Gersten and Gross.  相似文献   

3.
The present paper deals with the flow and heat transfer of a viscous fluid saturated in a porous medium past a permeable and non-isothermal stretching sheet with internal heat generation or absorption and radiation. Closed-form solutions to steady, two dimensional momentum equations with neglecting quadratic inertia terms and heat transfer equation are found using a similarity transformation. Asymptotic expressions of the temperature functions are also presented valid for both very large and very small modified Prandtl numbers. Attention is focused on the effects of porous parameter K, suction parameter R, radiation parameter Nr, viscosity ratio Λ, internal heat parameter α and Prandtl number P to the characteristics of flow and heat transfer.  相似文献   

4.
The method of similarity solution is used to study the influence of lateral mass flux and thermal dispersion on non-Darcy natural convection over a vertical flat plate in a fluid saturated porous medium. Forchheimer extension is considered in the flow equations and the coefficient of thermal diffusivity has been assumed to be the sum of molecular diffusivity and the dispersion thermal diffusivity due to mechanical dispersion. The suction/injection velocity distribution has been assumed to have power function form Ax l , where x is the distance from the leading edge and the wall temperature distribution is assumed to be uniform. When l=−1/2, similarity solution is possible, and the results indicate that the boundary layer thickness decreases where as the heat transfer rate increases as the mass flux parameter passes from injection domain to the suction domain. The increase in the thermal dispersion parameter is observed to enhance the heat transfer. The combined effect of thermal dispersion and fluid suction/injection on the heat transfer rate is discussed. Received on 9 September 1996  相似文献   

5.
An analysis is carried out to study the momentum, mass and heat transfer characteristics on the flow of visco-elastic fluid (Walter's liquid-B model) past a stretching sheet in the presence of a transverse magnetic field.In heat transfer, two cases are considered:
1.
The sheet with prescribed surface temperature (PST case); and
2.
The sheet with prescribed wall heat flux (PHF case).
The solution of equations of momentum, mass and heat transfer are obtained analytically. Emphasis has been laid to study the effects of various parameters like magnetic parameter Mn, visco-elastic parameter k1, Schmidt number Sc, and Prandtl number Pr on flow, heat and mass transfer characteristics.  相似文献   

6.
Flow and heat transfer over a permeable sensor surface placed in a squeezing channel is analyzed. A constant transpiration through the sensor surface is assumed. Locally non-similar momentum and energy equations are solved by three different methods, against the transpiration parameter τ, for different values of the squeezing parameter b, and Prandtl number Pr. From the investigation, it is found that when the channel being squeezed, the skin-friction reduces but the heat transfer coefficient increases. Increase in the value of the squeezing parameter onsets reverse flow at the sensor surface when fluid is being injected and the affect is enhanced with the increase of injection through the surface. It is further observed that increase of suction of fluid through the sensor thins the thermal and the momentum boundary layer regions, whereas injection of fluid leads to thickening of both the thermal and the momentum boundary layer regions. Heat transfer from the surface of the sensor increases with the increase of the value of Pr for the entire range of surface mass-flux parameter τ. M. A. Hossain is on leave of absence from University of Dhaka.  相似文献   

7.
In this article, a similarity solution of the steady boundary layer flow near the stagnation-point flow on a permeable stretching sheet in a porous medium saturated with a nanofluid and in the presence of internal heat generation/absorption is theoretically studied. The governing partial differential equations with the corresponding boundary conditions are reduced to a set of ordinary differential equations with the appropriate boundary conditions via Lie-group analysis. Copper (Cu) with water as its base fluid has been considered and representative results have been obtained for the nanoparticle volume fraction parameter f{\phi} in the range 0 £ f £ 0.2{0\leq \phi \leq 0.2} with the Prandtl number of Pr = 6.8 for the water working fluid. Velocity and temperature profiles as well as the skin friction coefficient and the local Nusselt number are determined numerically. The influence of pertinent parameters such as nanofluid volume fraction parameter, the ratio of free stream velocity and stretching velocity parameter, the permeability parameter, suction/blowing parameter, and heat source/sink parameter on the flow and heat transfer characteristics is discussed. Comparisons with published results are also presented. It is shown that the inclusion of a nanoparticle into the base fluid of this problem is capable to change the flow pattern.  相似文献   

8.
 The steady mixed convection flow over a vertical wedge with a magnetic field embedded in a porous medium has been investigated. The effects of the permeability of the medium, surface mass transfer and viscous dissipation on the flow and temperature fields have been included in the analysis. The coupled nonlinear partial differential equations governing the flow field have been solved numerically using the Keller box method. The skin friction and heat transfer are found to increase with the parameters characterizing the permeability of the medium, buoyancy force, magnetic field and pressure gradient. However the effect of the permeability and magnetic field on the heat transfer is very small. The heat transfer increases with the Prandtl number, but the skin friction decreases. The buoyancy force which assists the forced convection flow causes an overshoot in the velocity profiles. Both the skin friction and heat transfer increase with suction and the effect of injection is just the reverse. Received on 21 May 1999  相似文献   

9.
 The effect of lateral mass flux on mixed convection heat and mass transfer in a saturated porous medium adjacent to an inclined permeable surface is analyzed. A similarity solution is obtained when surface temperature and concentration, free stream velocity and injection/suction velocity of fluid are prescribed as power functions of distance from the leading edge. The cases when the flow and buoyancy forces are in the same and opposite directions are discussed both for aiding and opposing buoyancy effects. The governing parameters are the mixed convection parameter Gr, the Lewis number Le, the buoyancy ratio N, the lateral mass flux parameter f w, representing the effects of injection or withdrawal of fluid at the wall, and λ which specifies three cases of the inclined plate. The interactive effect of these parameters on heat and mass transfer rates are presented. It is observed that the diffusion ratio (Le) has a more pronounced effect on concentration field than on flow and temperature fields. It is found that the rates of heat and mass transfer increase with suction and decrease with injection of the fluid. Received on 31 August 2000 / Published online: 29 November 2001  相似文献   

10.
In the present work, the effect of MHD flow and heat transfer within a boundary layer flow on an upper-convected Maxwell (UCM) fluid over a stretching sheet is examined. The governing boundary layer equations of motion and heat transfer are non-dimensionalized using suitable similarity variables and the resulting transformed, ordinary differential equations are then solved numerically by shooting technique with fourth order Runge–Kutta method. For a UCM fluid, a thinning of the boundary layer and a drop in wall skin friction coefficient is predicted to occur for higher the elastic number. The objective of the present work is to investigate the effect of Maxwell parameter β, magnetic parameter Mn and Prandtl number Pr on the temperature field above the sheet.  相似文献   

11.
The problem of Marangoni convection boundary layer flow that can be formed along the interface of two immiscible fluids when the wall is permeable, where there is suction or injection effect, is considered. Similarity equations are obtained through the application of similarity transformation techniques. The effects of suction/injection and radiation parameters on the heat transfer characteristics are numerically studied using the shooting method for a fixed value of the Prandtl number (Pr=0.7). Numerical results are obtained for the surface temperature gradient or the heat transfer rate as well as the temperature profiles for some values of the governing parameters. Comparisons with known results from the open literature show very good agreements. The results indicate that the heat transfer rate at the surface decreases as the radiation parameter increases. Further, results show that multiple (dual) solutions exist for a certain range of the governing parameters.  相似文献   

12.
The unsteady free convection flow over an infinite vertical porous plate, which moves with time-dependent velocity in an ambient fluid, has been studied. The effects of the magnetic field and Hall current are included in the analysis. The buoyancy forces arise due to both the thermal and mass diffusion. The partial differential equations governing the flow have been solved numerically using both the implicit finite difference scheme and the difference-differential method. For the steady case, analytical solutions have also been obtained. The effect of time variation on the skin friction, heat transfer and mass transfer is very significant. Suction increases the skin friction coefficient in the primary flow, and also the Nusselt and Sherwood numbers, but the skin friction coefficient in the secondary flow is reduced. The effect of injection is opposite to that of suction. The buoyancy force, injection and the Hall parameter induce an overshoot in the velocity profiles in the primary flow which changes the velocity gradient from a negative to a positive value, but the magnetic field and suction reduce this velocity overshoot.  相似文献   

13.
A theoretical analysis of three-dimensional Couette flow with radiation effect on temperature distribution has been analysed, when the injection of the fluid at the lower stationary plate is a transverse sinusoidal one and its corresponding removal by constant suction through the upper porous plate is in uniform motion. Due to this type of injection velocity, the flow becomes three-dimensional. The effect of Prandtl number, radiation parameter and injection parameter on rate of heat transfer has been examined by the help of graphs. The Prandtl number has a much greater effect on the temperature distribution than the injection or radiation parameter.  相似文献   

14.
白羽  万飒  张艳 《计算力学学报》2023,40(4):546-551
研究了非稳态分数阶Oldroyd-B流体在多孔介质中通过楔形拉伸板的驻点流动问题。基于分数阶Oldroyd-B流体的本构模型建立了动量方程,并在其中引入了浮升力和驻点流动特征。此外,考虑了具有热松弛延迟时间的修正的分数阶Fourier定律,并将其应用于能量方程和对流换热边界条件。接着,采用与L1算法相结合的有限差分法求解控制偏微分方程。最后,分析了相关物理参数对流动的影响。结果表明,随着楔角参数的增加,流体受到的浮升力增大,导致速度加快;达西数越大,介质的孔隙度变大,流体的流动越快;此外,温度分布先略有上升后明显下降,这表明Oldroyd-B流体具有热延迟特性。  相似文献   

15.
We study theoretically and computationally the incompressible, non-conducting, micropolar, biomagnetic (blood) flow and heat transfer through a two-dimensional square porous medium in an (x,y) coordinate system, bound by impermeable walls. The magnetic field acting on the fluid is generated by an electrical current flowing normal to the xy plane, at a distance l beneath the base side of the square. The flow regime is affected by the magnetization B 0 and a linear relation is used to define the relationship between magnetization and magnetic field intensity. The steady governing equations for x-direction translational (linear) momentum, y-direction translational (linear) momentum, angular momentum (micro-rotation) and energy (heat) conservation are presented. The energy equation incorporates a special term designating the thermal power per unit volume due to the magnetocaloric effect. The governing equations are non-dimensionalized into a dimensionless (ξ,η) coordinate system using a set of similarity transformations. The resulting two point boundary value problem is shown to be represented by five dependent non-dimensional variables, f ξ  (velocity), f η (velocity), g (micro-rotation), E (magnetic field intensity) and θ (temperature) with appropriate boundary conditions at the walls. The thermophysical parameters controlling the flow are the micropolar parameter (R), biomagnetic parameter (N H ), Darcy number (Da), Forchheimer (Fs), magnetic field strength parameter (Mn), Eckert number (Ec) and Prandtl number (Pr). Numerical solutions are obtained using the finite element method and also the finite difference method for Ec=2.476×10−6 and Prandtl number Pr=20, which represent realistic biomagnetic hemodynamic and heat transfer scenarios. Temperatures are shown to be considerably increased with Mn values but depressed by a rise in biomagnetic parameter (N H ) and also a rise in micropolarity (R). Translational velocity components are found to decrease substantially with micropolarity (R), a trend consistent with Newtonian blood flows. Micro-rotation values are shown to increase considerably with a rise in R values but are reduced with a rise in biomagnetic parameter (N H ). Both translational velocities are boosted with a rise in Darcy number as is micro-rotation. Forchheimer number is also shown to decrease translational velocities but increase micro-rotation. Excellent agreement is demonstrated between both numerical solutions. The mathematical model finds applications in blood flow control devices, hemodynamics in porous biomaterials and also biomagnetic flows in highly perfused skeletal tissue. Dedicated to Professor Y.C. Fung (1919-), Emeritus Professor of Biomechanics, Bioengineering Department, University of California at San Diego, USA for his seminal contributions to biomechanics and physiological fluid mechanics over four decades and his excellent encouragement to the authors, in particular OAB, with computational biofluid dynamics research.  相似文献   

16.
Summary The effect of surface mass flux on the non-Darcy natural convection over a horizontal flat plate in a saturated porous medium is studied using similarity solution technique. Forchheimer extension is considered in the flow equations. The suction/injection velocity distribution has been assumed to have power function form Bx l , similar to that of the wall temperature distribution Ax n , where x is the distance from the leading edge. The thermal diffusivity coefficient has been assumed to be the sum of the molecular diffusivity and the dynamic diffusivity due to mechanical dispersion. The dynamic diffusivity is assumed to vary linearly with the velocity component in the x direction, i.e. along the hot wall. For the problem of constant heat flux from the surface (n=1/2), similarity solution is possible when the exponent l takes the value −1/2. Results indicate that the boundary layer thickness decreases whereas the heat transfer rate increases as the mass flux parameter passes from the injection domain to the suction domain. The increase in the thermal dispersion parameter is observed to favor the heat transfer by reducing the boundary layer thickness. The combined effect of thermal dispersion and fluid suction/injection on the heat transfer rate is discussed. Received 7 December 1995; accepted for publication 7 January 1997  相似文献   

17.
Heat transfer analysis has been presented for the boundary layer forced convective flow of an incompressible fluid past a plate embedded in a porous medium. The similarity solutions for the problem are obtained and the reduced nonlinear ordinary differential equations are solved numerically. In case of porous plate, fluid velocity increases for increasing values of suction parameter whereas due to injection, fluid velocity is noticed to decrease. The non-dimensional temperature increases with the increasing values of injection parameter. A novel result of this investigation is that the flow separation occurred due to suction/injection may be controlled by increasing the permeability parameter of the medium. The effect of thermal radiation on temperature field is also analyzed.  相似文献   

18.
For wedge flows heat transfer coefficients for large Prandtl numbers Pr are investigated. The asymptotic approximations are completely different for impermeable wall, for suction and for injection. For small parameters f0 of suction or injection and large Prandtl numbers a singular perturbation problem with two perturbation parameters arises, whose solution depends only on a combination of the two parameters proportional to f0Pr2/3. In the analogous diffusion problem the properly based mass transfer coefficient and because of the Eckert-Schneider condition also the wall concentration depend only on the combination f0Sc2/3.  相似文献   

19.
The effects of suction/injection on steady laminar mixed convection boundary layer flow over a permeable horizontal surface of a wedge in a viscous and incompressible fluid is considered in this paper. The similarity solutions of the governing boundary layer equations are obtained for some values of the suction/injection parameter f 0, the constant exponent m of the wall temperature as well as the mixed convection parameter λ. The resulting system of nonlinear ordinary differential equations is solved numerically for both assisting and opposing flow regimes using an implicit finite-difference scheme known as the Keller-box method. Numerical results for the reduced skin friction coefficient, the local Nusselt number, and the velocity and temperature profiles are obtained for various values of parameters considered. Dual solutions are found to exist for the case of opposing flow.  相似文献   

20.
In this study, laminar boundary layer flow over a flat plate embedded in a fluid-saturated porous medium in the presence of viscous dissipation, inertia effect and suction/injection is analyzed using the Keller box finite difference method. The flat plate is assumed to be held at constant temperature. The non-Darcian effects of convection, boundary and inertia are considered. Results for the local heat transfer parameter and the local skin friction parameter as well as the velocity and temperature profiles are presented for various values of the governing parameters. The non-Darcian effects are shown to decrease the velocity and to increase the temperature. It is also shown that the local heat transfer parameter and the local skin friction parameter increase due to suction of fluid while injection reverses this trend. It is disclosed that the effect of the viscous dissipation for negative values of Ec (T w < T ) is to enhance the heat transfer coefficient while the opposite is true for positive values of Ec (T w > T ). The results are compared with those available in the existing literature and an excellent agreement is obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号