首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Two new neutral Keggin-polyoxometalate derivatives: [{Co(2,2′-bipy)2(H2O)}2]–[PMoVI7MoV5O40(VIVO)2] (1) and [{Ni(phen)2(H2O)}2](H3O) [PMoVI10MoV2O40] · 4H2O (2) have been synthesized under hydrothermal conditions and characterized by i.r., t.g. analysis, x.p.s. spectra and single-crystal X-ray diffraction. In the case of (1), the polyoxoanion cluster [PMo12O40]8− is capped by two vanadium atoms via four bridging oxo groups on two opposite {Mo4O4} pits of the Keggin polyoxoanion. Two {Co (2,2′-bipy)2(H2O)} fragments are supported on the two vanadium atoms through two terminal oxygen atoms from two vanadium atoms. In (2), two {Ni(phen)2(H2O)}2+ moieties are linked to the molybdophosphate cluster [PMo12O40] core to form a neutral bimetallic cluster. Furthermore, through the linkages of ππ stacking interactions and hydrogen bond contacts, extended three-dimensional supramolecular networks in the solid of (1) and (2) were formed.  相似文献   

2.
By using cyclohexane‐1,2‐diamine (chxn), Ni(ClO4)2 ? 6H2O and Na3[Mo(CN)8] ? 4H2O, a 3D diamond‐like polymer {[NiII(chxn)2]2[MoIV(CN)8] ? 8H2O}n ( 1 ) was synthesised, whereas the reaction of chxn and Cu(ClO4)2 ? 6H2O with Na3[MV(CN)8] ? 4H2O (M=Mo, W) afforded two isomorphous graphite‐like complexes {[CuII(chxn)2]3[MoV(CN)8]2 ? 2H2O}n ( 2 ) and {[CuII(chxn)2]3[WV(CN)8]2 ? 2H2O}n ( 3 ). When the same synthetic procedure was employed, but replacing Na3[Mo(CN)8] ? 4H2O by (Bu3NH)3[Mo(CN)8] ? 4H2O (Bu3N=tributylamine), {[CuII(chxn)2MoIV(CN)8][CuII(chxn)2] ? 2H2O}n ( 4 ) was obtained. Single‐crystal X‐ray diffraction analyses showed that the framework of 4 is similar to 2 and 3 , except that a discrete [Cu(chxn)2]2+ moiety in 4 possesses large channels of parallel adjacent layers. The experimental results showed that in this system, the diamond‐ or graphite‐like framework was strongly influenced by the inducement of metal ions. The magnetic properties illustrate that the diamagnetic [MoIV(CN)8] bridges mediate very weak antiferromagnetic coupling between the NiII ions in 1 , but lead to the paramagnetic behaviour in 4 because [MoIV(CN)8] weakly coordinates to the CuII ions. The magnetic investigations of 2 and 3 indicate the presence of ferromagnetic coupling between the CuII and WV/MoV ions, and the more diffuse 5d orbitals lead to a stronger magnetic coupling interaction between the WV and CuII ions than between the MoV and CuII ions.  相似文献   

3.
Molybdenum polyoxometallates with the buckyball structure, ((NH4)42[Mo72VIMo60VO372(H3CCOO)30(H2O)72] · 30H3CCOONH4 · 250H2O (I), (NH4)42[Mo72VIMo60VO372(ClCH2COO)30(H2O)72)] · 250H2O · 15ClCH2COONa (II), in particular, as parts of polymer-containing compositions were studied by EPR, NMR, IR, and Raman spectroscopy. The structural and chemical aspects responsible for the formation of the observed spectra were considered.  相似文献   

4.
Xu  Lin  Wang  Enbo  Liu  Jie  Huang  Rudan 《Transition Metal Chemistry》2003,28(2):142-148
Eighteen lanthanide salts of silicomolybdate heteropoly blues, LnH3[SiMo10 VIMo2 VO40] · nH2O, Ln2H2-[SiMo9 VIMo2 VO39Co(H2O)] · nH2O and Ln2H2[SiMo9 VIMo2 VO39Ni(H2O)] · nH2O (Ln = La, Ce, Pr, Nd, Sm or Gd), were prepared by electrolytic reduction and characterized by elemental analyses, i.r. spectra, and electronic spectra. Their electronic and magnetic properties were studied by means of e.s.r., 29Si-n.m.r., and magnetic measurements. The results show that these heteropoly blues retain the Keggin structure. The measured magnetic moment of the Ln3+ ion in LnH3[SiMo10 VIMo2 VO40] · nH2O is smaller than the theoretical values, implying that the Ln3+ cation interacts with the heteropoly blue anion. An antiferromagnetic interaction involving the d electron of the Co2+ or Ni2+ transition metal ion occur in the substituted silicomolybdate heteropoly blues. The e.s.r. spectra show the extent of reduction electron localization at 77 K. The electron density on the Si atom in the heteropoly blue increases with increasing electronegativity of the transition element (Mo, Co, Ni).  相似文献   

5.
Five mixed‐metal mixed‐valence Mo/V polyoxoanions, templated by the pyramidal SeO32? heteroanion have been isolated: K10[MoVI12VV10O58(SeO3)8]?18 H2O ( 1 ), K7[MoVI11VV5VIV2O52(SeO3)]?31 H2O ( 2 ), (NH4)7K3[MoVI11VV5VIV2O52(SeO3)(MoV6VV‐ O22)]?40 H2O ( 3 ), (NH4)19K3[MoVI20VV12VIV4O99(SeO3)10]?36 H2O ( 4 ) and [Na3(H2O)5{Mo18?xVxO52(SeO3)} {Mo9?yVyO24(SeO3)4}] ( 5 ). All five compounds were characterised by single‐crystal X‐ray structure analysis, TGA, UV/Vis and FT‐IR spectroscopy, redox titrations, and elemental and flame atomic absorption spectroscopy (FAAS) analysis. X‐ray studies revealed two novel coordination modes for the selenite anion in compounds 1 and 4 showing η,μ and μ,μ coordination motifs. Compounds 1 and 2 were characterised in solution by using high‐resolution ESI‐MS. The ESI‐MS spectra of these compounds revealed characteristic patterns showing distribution envelopes corresponding to 2? and 3? anionic charge states. Also, the isolation of these compounds shows that it may be possible to direct the self‐assembly process of the mixed‐metal systems by controlling the interplay between the cation “shrink‐wrapping” effect, the non‐conventional geometry of the selenite anion and fine adjustment of the experimental variables. Also a detailed IR spectroscopic analysis unveiled a simple way to identify the type of coordination mode of the selenite anions present in POM‐based architectures.  相似文献   

6.
Two new compounds, (H2en)3(H2enMe)4(H3O){CuI[MoV 6O12(OH)3(HPO4)(PO4)3]2}?·?6H2O (1) and (H2enMe)4{CuICuII[MoV 6O12(OH)3(PO4)(HPO4)2(H2PO4)]2}?·?3H2O (2), were hydrothermally synthesized and characterized by elemental analysis, IR, TGA, and single-crystal X-ray diffraction analysis. Crystallographic analysis reveals that 1 is constructed from cluster anions {CuI[MoV 6O12(OH)3(HPO4)(PO4)3]2}15?, protonated organic amines, and water molecules. Each cluster is bridged through hydrogen bonds to form a 3-D supermolecular structure. For 2, {CuI[MoV 6O12(OH)3(PO4)(HPO4)2(H2PO4)]2}11? are connected by CuII cations to form an infinite chain. The formation of 1 and 2 reveals that organoamines influence the structures of the crystals.  相似文献   

7.
Two new reduced molybdenum pyrophosphates, Na28[Na2{(Mo2O4)10(P2O7)10(HCOO)10}]·108H2O ( 1 ) and Na22(H3O)2[Na4{(Mo2O4)10(P2O7)10(CH3COO)8(H2O)4}]·91H2O ( 2 ) have been synthesized and characterized by single‐crystal X‐ray diffraction. Red crystals of 1 are triclinic, space group , with a = 17.946(4) Å, b = 18.118(4) Å, c = 21.579(4) Å, α = 114.47(3)°, β = 93.54(3)°, γ = 114.39(3)° and V = 5581.8(19) Å3, and orange crystals of 2 are monoclinic, space group P21/n, with a = 21.467(4) Å, b = 23.146(5) Å, c = 24.069(5) Å, β = 101.76(3)° and V = 11708(4) Å3. They are both constructed by MoV dimers ({Mo2O4(OP)4(HCOO)} in 1 , {Mo2O4(OP)4(CH3COO)} and {Mo2O4(OP)4(H2O)2} in 2 ) and pyrophosphoric groups. Their structures can be described as two interconnected nonequivalent wheels which are approximately perpendicular, delimiting a large cavity. The larger wheel contains six MoV dimers, while the smaller one has four dimers.  相似文献   

8.
Novel molybdenum(VI/V) POM-based self-constructed frameworks [MoVI12O242-O)12(trz)6(H2O)6] ⋅ 6Hma ⋅ 18H2O ( 1 , Htrz=1H-1,2,3-triazole, ma=methylamine), [MoVI7O142-O)8(trz)5(H2O)] ⋅ 7Hma ⋅ 5H2O ( 2 ), Na3[MoV6O62-O)9(Htrz)3(trz)3] ⋅ 7.5H2O ( 3 ) and [MoV8O82-O)12(Htrz)8] ⋅ 30H2O ( 4 ) have been covalently decorated with tri-coordinated deprotonated/protonated 1,2,3-triazoles. Channels with an inner diameter of 7.5 Å were found in 1 , whereas a tunnel composed of stacking molecules with an inner diameter of 4.1 Å along the b-axis exists in 2 ; it is occupied by free disordered methylamines, showing selective adsorption of O2 and CO2 at 25 °C. Obvious downfield shifts were observed by 13C NMR spectroscopies for methylamines inside the confined channels in 1 and 2 . There are diversified pores in 3 and 4 , which are formed by the molecules themselves and intermolecular accumulations. Adsorption tests indicate that 3 and 4 are fine adsorption materials for CH4 and CO2 under low pressure that rely on the environments built by the POMs. Correspondingly, 1 and 2 display reversible photoresponsive thermochromism that is subtlety influenced by the channels. The polyoxometalate organic frameworks (POMOFs) with multiple functional adsorptions are easy to assemble. Their photo-/thermoresponse properties offer a new pathway for the self-constructions of one-off hybrid materials that possess the good properties of both POMs and MOFs.  相似文献   

9.
New dinuclear pentacoordinate molybdenum(V) complexes, [Mo2VO3L2] [L = thiosemicarbazonato ligand: C6H4(O)CH:NN:C(S)NHR′ and C10H6(O)CH:NN:C(S)NHR′; R′ = H, CH3, C6H5) were obtained either by oxygen atom abstraction from MoVIO2L with triphenylphosphine or by using [Mo2O3(acac)4] in the reaction with the corresponding ligands H2L. Crystal and molecular structure of [Mo2O3{C6H4(O)CH:NN:C(S)NHC6H5}2] · CH3CN has been determined by the single‐crystal X‐ray diffraction method.  相似文献   

10.
The diffusion reaction of Mn2+ ions, the bidentate ligand dabco, and [Mo(CN)8]3– units at different temperatures produced 2D layer [MnII(dabco)MoV(CN)8]2 · [MnII(H2O)6] · 2H2O ( 1 ) and 3D network [MnII(dabco)]2[MnII(CH3OH)4][MoV(CN)8]2 · 2H2O ( 2 ). Structural analysis revealed that there are two independent central Mn atoms (Mn1 and Mn2) in the structure for each compound, which exhibit trigonal bipyramid and octahedral arrangement, respectively. Notably, the coordination mode of the Mn2 unit between layers in both compounds was responsible for the resulting structural dimensionalities. The crystal growth process of final products was dominantly controlled by the kinetics. The isolation of both compounds provides an insight into the effect of crystallization temperatures on the formation and structural conversion of manganese octacyanometalates.  相似文献   

11.
Two new compounds based on O3PCH2PO34? ligands and {MoV2O4} dimeric units have been synthesized and structurally characterized. The dodecanuclear MoV polyoxomolybdate species in (NH4)18[(MoV2O4)6(OH)6(O3PCH2PO3)6]?33 H2O ( 1 ) is a cyclohexane‐like ring in a chair conformation with pseudo S6 symmetry. In the solid state, the wheels align side by side, thus delimiting large rectangular voids. The hexanuclear anion in Na8[(MoV2O4)3(O3PCH2PO3)3(CH3AsO3)]? 19 H2O ( 2 ) has a triangular framework and encapsulates a methylarsenato ligand. 31P NMR spectroscopic analysis revealed the stability of 2 in various aqueous media, whereas the stability of 1 depends on the nature of the cations present in solution. It has been evidenced that the transformation of 1 into 2 occurs in the presence of CH3AsO32? ions. This behavior shows that 1 can be used as a new precursor for the synthesis of MoV/diphosphonate systems. The two complexes were very efficient both as reductants of Pt and Pd metallic salts and as capping agents for the resulting Pt0 and Pd0 nanoparticles. The size of the obtained nanoparticles depends both on the nature of the polyoxometalate (POM; i.e., 1 or 2 ) and on the [metallic salt]/[POM] ratio. In all cases, X‐ray photoelectron spectroscopy (XPS) measurements have revealed the presence of MoVI species that stabilize the nanoparticles and the absence of MoV moieties. Diffuse‐reflectance FTIR spectra of the Pt nanoparticles show that the capping MoVI POMs are identical for both systems and contain the diphosphonato ligand. The colloidal solutions do not show any precipitate and the nanoparticles remain well‐dispersed for several months. The electrochemical reduction of MoV species was studied for 2 . Cyclic voltammetry alone and electrochemical quartz crystal microbalance coupled with cyclic voltammetry show the deposition of a film on the electrode surface during this reduction.  相似文献   

12.
Two novel polyoxometalate (POM)‐based coordination polymers, namely, [Co(bpz)(Hbpz)][Co(SO4)0.5(H2O)2(bpz)]4 [PMoVI8MoV4VIV4O42]?13 H2O ( NENU‐530 ) and [Ni2(bpz)(Hbpz)3(H2O)2][PMoVI8MoV4VIV4O44]?8 H2O ( NENU‐531 ) (H2bpz=3,3′,5,5′‐tetramethyl‐4,4′‐bipyrazole), were isolated by hydrothermal methods, which represented 3D networks constructed by POM units, the protonated ligand and sulfate group. In contrast with most POM‐based coordination polymers, these two compounds exhibit exceptional excellent chemical and thermal stability. More importantly, NENU‐530 shows a high proton conductivity of 1.5×10?3 S cm?1 at 75 °C and 98 % RH, which is one order of magnitude higher than that of NENU‐531 . Furthermore, structural analysis and functional measurement successfully demonstrated that the introduction of sulfate group is favorable for proton conductivity. Herein, the syntheses, crystal structures, proton conductivity, and the relationship between structure and property are presented.  相似文献   

13.
A planar network consisting of {Mo17(NO)2}3{MoV 2}3{Fe6III} cluster entities that are interlinked to layers via {FeII(H2O)4}2+ groups is formed stepwise from building units. The corresponding mixed-valence compound exhibits a variety of different formal oxidation states: {MoNO}3+, MoV, MoVI, FeII, and FeIII. This compound also represents an extension of building-block hierarchy from the molecular level to extended networks.  相似文献   

14.
The reactivity of the [MoV2O4]2+ dinuclear unit with the [O3P(C(CH3)(OH))PO3]4? etidronate ligand has been investigated. Three complexes have been isolated and characterized by IR spectroscopy, elemental analysis and single crystal X-Ray diffraction studies. Structural determination of the tetranuclear compound (CN3H6)6[(MoV2O4)2(O3P(C(CH3)O)PO3)2]·12H2O (1) revealed that the hydroxo group of the etidronate ligand can be deprotonated in presence of MoV even in acidic media. It follows that its coordination mode thus differs from that of the methylenediphosphonate ligand [O3P(CH2)PO3]4?, which reactivity with MoV has been previously widely studied. In contrast, no such deprotonation of the hydroxo group is observed in the (NH4)18[(MoV2O4)6(OH)6(O3P(C(CH3)(OH))PO3)6]·35H2O complex 2. This species contains a dodecanuclear core analogous to the one previously found in the [(MoV2O4)6(OH)6(O3PCH2PO3)6]18? methylenediphosphonato polyanion. In 2, six interconnected {(MoV2O4)(O3P(C(CH3)(OH))PO3)} units form a cyclohexane-like ring in a chair conformation. In the (CN3H6)18Na3[(MoV2O4)7(O3P(C(CH3)(OH))PO3)7(CH3COO)7]·5CH3COONa 52H2O compound 3, seven {(MoV2O4)(O3P(C(CH3)(OH))PO3)(CH3COO)} units are connected, forming an almost planar tetradecanuclear wheel. This compound represents the largest homometallic MoV polyoxometalate cyclic system reported to date. Finally, 31P NMR studies revealed that only complex 1 is stable in aqueous solution.  相似文献   

15.
The title compounds, hexa­aqua­cobalt(II) bis­(hypophosphite), [Co(H2O)6](H2­PO2)2, and hexa­aqua­cobalt(II)/nickel(II) bis(hypophosphite), [Co0.5Ni0.5(H2O)6](H2PO2)2, are shown to adopt the same structure as hexa­aqua­magnesium(II) bis­(hypophosphite). The packing of the Co(Ni) and P atoms is the same as in the structure of CaF2. The CoII(NiII) atoms have a pseudo‐face‐centred cubic cell, with a = b~ 10.3 Å, and the P atoms occupy the tetrahedral cavities. The central metal cation has a slightly distorted octahedral coordination sphere. The geometry of the hypophosphite anion in the structure is very close to ideal, with point symmetry mm2. Each O atom of the hypophosphite anion is hydrogen bonded to three water mol­ecules from different cation complexes, and each H atom of the hypophosphite anion is surrounded by three water mol­ecules from further different cation complexes.  相似文献   

16.
A new molybdophosphate (NH4)8{Mo2VO4[(Mo2VIO6)CH3C(O)(PO3)2]2}·14H2O (1), has been synthesized by the reaction of {Mo2VO4(H2O)6}2+ fragments with 1-hydroxyethylidenediphosphonate (hedp HOC(CH3)(PO3H2)2), and it is characterized by 31P NMR, IR, UV, element analysis, TG and single-crystal X-ray analysis. The structure analysis reveals that the polyoxoanion can be described as two {(Mo2VIO6)(CH3C(O)(PO3)2} units connected by a {Mo2VO4}2+ moiety. In the structure, the six Mo atoms are arranged into a new “W-shaped” structure, which represents a new kind of molybdophosphate.  相似文献   

17.
The compounds (NMe4)5[As2Mo8V4AsO40] · 3 H2O 2a , (NH4)21[H3Mo57V6(NO)6O183(H2O)18] · 65 H2O 3a , (NH2Me2)18(NH4)6[Mo57V6(NO)6O183(H2O)18] · 14 H2O 3b and (NH4)12[Mo36(NO)4O108(H2O)16] · 33 H2O 4a ( 3a and 4a were not correctly reported in the literature regarding to their composition, structures and the oxidation states of the metal centres) which contain large isolated anionic species, have been prepared (among them 3a, 3b , and 4a in rather high yield) and characterized by complete crystal structure analysis as well as IR/Raman, UV/VIS/NIR, ESR spectroscopy and magnetic susceptibility measurements, redox titrations, bond valence sum calculations, elemental analyses and thermogravimetric studies. Perspectives for polyoxometalate chemistry referring to the synthesis of “extremely” large nanoscaled species are discussed, together with the occurrence of a large transferable {Mo17} building block in the compounds 3a, 3b and 4a which also exists in the corresponding iron compound Na3(NH4)12[H15Mo57Fe6(NO)6O183(H2O)18] · 76 H2O 7a .  相似文献   

18.
Two polyoxometalate-based inorganic metal-organic hybrid supramolecular complexes [Cu(2,2′-bpy)2]2[VIV 2MoV 5MoVI 7O38(PO4)] (1) (2,2′-bpy?=?2,2′-bipyridine) and [Cu(2,2′-bpy)2]2[MoVMoVI 11O36(PO4)]?·?3H2O (2), have been hydrothermally prepared and structurally characterized by single-crystal X-ray diffraction. Both complexes are constructed from polyoxoanions (the bivanadyl capped α-Keggin polymolybdate anion [VIV 2MoV 5MoVI 7O38(PO4)]4? for 1 and the reduced 12-molybdophosphate anion [MoVMoVI 11O36(PO4)]4? for 2) and copper(II) complex cations [Cu(2,2′-bpy)2]2+, forming two-dimensional (2D) layer network structures, in which the polyoxoanion and the complex fragment cation connect with each other through Cu?···?Opolyoxoanion short contact weak interactions, which mediate ferromagnetic interaction.  相似文献   

19.
A new α-Keggin unit supported transition metal complex, {PMoVI 11MoVO40 [Co(TATP)2(H20)]2}?·?4H2O (1) (TATP?=?1,4,8,9-tetranitrogen-trisphene), has been hydrothermally synthesized and characterized by single crystal X-ray diffraction. X-Ray analysis showed that the two [Co(TATP)2(H2O)] units are covalently bonded to the α-Keggin unit [PMoVI 11MoV04o]4? via the terminal oxygen atoms. 1 represents the α-Keggin type polyoxoanion coordinated with two transition metal complex moieties, which further acts as a neutral molecular unit to construct an interesting 3D supramolecualr framework.  相似文献   

20.
《Polyhedron》1999,18(21):2781-2785
The compounds (NH4)6[Mo6V2O24(C2O4)2]·6H2O (I) and (NH4)4[H2Mo2V2O12(C2O4)2]·2H2O (II) have been prepared from molybdenum(VI) oxide and ammonium vanadate in aqueous solution through the addition of ammonium oxalate, and their structures determined by X-ray structure analysis. Whereas the molybdovanadate anion [Mo6V2O24(C2O4)2]6− found in (I) consists of six MoO6 and two VO6 edge-sharing octahedra of the γ-[Mo8O26]4− type structure, the tetranuclear anion [H2Mo2V2O12(C2O4)2]4− of (II) adopts the structure with a M4O16 core. Both complexes contain bidentate oxalato ligands bonded to the vanadium ions. In both crystal structures the molybdovanadate anions are mutually hydrogen bonded by ammonium ions and water molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号