首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Assemblies of pyrazine‐2,3‐dicarboxylic acid and CdII in the presence of bis(1,2,4‐triazol‐1‐yl)butane or bis(1,2,4‐triazol‐1‐yl)ethane under ambient conditions yielded two new coordination polymers, namely poly[[tetraaqua[μ2‐1,4‐bis(1,2,4‐triazol‐1‐yl)butane‐κ2N4:N4′]bis(μ2‐pyrazine‐2,3‐dicarboxylato‐κ3N1,O2:O3)dicadmium(II)] dihydrate], {[Cd2(C6H2N2O4)2(C8H12N6)(H2O)4]·2H2O}n, (I), and poly[[diaqua[μ2‐1,2‐bis(1,2,4‐triazol‐1‐yl)ethane‐κ2N4:N4′]bis(μ3‐pyrazine‐2,3‐dicarboxylato‐κ4N1,O2:O3:O3′)dicadmium(II)] dihydrate], {[Cd2(C6H2N2O4)2(C6H8N6)(H2O)2]·2H2O}n, (II). Complex (I) displays an interesting two‐dimensional wave‐like structure and forms a distinct extended three‐dimensional supramolecular structure with the help of O—H...N and O—H...O hydrogen bonds. Complex (II) has a three‐dimensional framework structure in which hydrogen bonds of the O—H...N and O—H...O types are found.  相似文献   

2.
Metal–organic frameworks (MOFs) based on multidentate N‐heterocyclic ligands involving imidazole, triazole, tetrazole, benzimidazole, benzotriazole or pyridine present intriguing molecular topologies and have potential applications in ion exchange, magnetism, gas sorption and storage, catalysis, optics and biomedicine. The 2‐[(1H‐1,2,4‐triazol‐1‐yl)methyl]‐1H‐benzimidazole (tmb) ligand has four potential N‐atom donors and can act in monodentate, chelating, bridging and tridentate coordination modes in the construction of complexes, and can also act as both a hydrogen‐bond donor and acceptor. In addition, the tmb ligand can adopt different coordination conformations, resulting in complexes with helical structures due to the presence of the flexible methylene spacer. A new three‐dimensional coordination polymer, poly[[bis(μ2‐benzene‐1,4‐dicarboxylato)‐κ4O1,O1′:O4,O4′2O1:O4‐bis{μ2‐2‐[(1H‐1,2,4‐triazol‐1‐yl)methyl‐κN4]‐1H‐benzimidazole‐κN3}dizinc(II)] trihydrate], {[Zn(C8H4O4)(C10H9N5)]·1.5H2O}n, has been synthesized by the reaction of ZnCl2 with tmb and benzene‐1,4‐dicarboxylic acid (H2bdic) under solvothermal conditions. There are two crystallographically distinct bdic2− ligands [bdic2−(A) and bdic2−(B)] in the structure which adopt different coordination modes. The ZnII ions are bridged by tmb ligands, leading to one‐dimensional helical chains with different handedness, and adjacent helices are linked by bdic2−(A) ligands, forming a two‐dimensional network structure. The two‐dimensional layers are further connected by bdic2−(B) ligands, resulting in a three‐dimensional framework with the topological notation 66. The IR spectra and thermogravimetric curves are consistent with the results of the X‐ray crystal structure analysis and the title polymer exhibits good fluorescence in the solid state at room temperature.  相似文献   

3.
The Co‐MOF poly[[diaqua{μ4‐1,1,2,2‐tetrakis[4‐(1H‐1,2,4‐triazol‐1‐yl)phenyl]ethylene‐κ4N:N′:N′′:N′′′}cobalt(II)] benzene‐1,4‐dicarboxylic acid benzene‐1,4‐dicarboxylate], {[Co(C34H24N12)(H2O)2](C8H4O4)·C8H6O4}n or {[Co(ttpe)(H2O)2](bdc)·(1,4‐H2bdc)}n, (I), was synthesized by the hydrothermal method using 1,1,2,2‐tetrakis[4‐(1H‐1,2,4‐triazol‐1‐yl)phenyl]ethylene (ttpe), benzene‐1,4‐dicarboxylic acid (1,4‐H2bdc) and Co(NO3)2·6H2O, and characterized by single‐crystal X‐ray diffraction, IR spectroscopy, powder X‐ray diffraction (PXRD), luminescence, optical band gap and valence band X‐ray photoelectron spectroscopy (VB XPS). Co‐MOF (I) shows a (4,4)‐connected binodal two‐dimensional topology with a point symbol of {44·62}{44·62}. The two‐dimensional networks capture free neutral 1,4‐H2bdc molecules and bdc2? anions, and construct a three‐dimensional supramolecular architecture via hydrogen‐bond interactions. MOF (I) is a good photocatalyst for the degradation of methylene blue and rhodamine B under visible‐light irradiation and can be reused at least five times.  相似文献   

4.
The title compound, {[Zn4(C8H4O4)3(OH)2(C12H6N2O2)2]·2H2O}n, has been prepared hydrothermally by the reaction of Zn(NO3)2·6H2O with benzene‐1,4‐dicarboxylic acid (H2bdc) and 1,10‐phenanthroline‐5,6‐dione (pdon) in H2O. In the crystal structure, a tetranuclear Zn4(OH)2 fragment is located on a crystallographic inversion centre which relates two subunits, each containing a [ZnN2O4] octahedron and a [ZnO4] tetrahedron bridged by a μ3‐OH group. The pdon ligand chelates to zinc through its two N atoms to form part of the [ZnN2O4] octahedron. The two crystallographically independent bdc2− ligands are fully deprotonated and adopt μ3‐κOO′:κO′′ and μ4‐κOO′:κO′′:κO′′′ coordination modes, bridging three or four ZnII cations, respectively, from two Zn4(OH)2 units. The Zn4(OH)2 fragment connects six neighbouring tetranuclear units through four μ3‐bdc2− and two μ4‐bdc2− ligands, forming a three‐dimensional framework with uninodal 6‐connected α‐Po topology, in which the tetranuclear Zn4(OH)2 units are considered as 6‐connected nodes and the bdc2− ligands act as linkers. The uncoordinated water molecules are located on opposite sides of the Zn4(OH)2 unit and are connected to it through hydrogen‐bonding interactions involving hydroxide and carboxylate groups. The structure is further stabilized by extensive π–π interactions between the pdon and μ4‐bdc2− ligands.  相似文献   

5.
Two new NiII complexes involving the ancillary ligand bis[(pyridin‐2‐yl)methyl]amine (bpma) and two different carboxylate ligands, i.e. homophthalate [hph; systematic name: 2‐(2‐carboxylatophenyl)acetate] and benzene‐1,2,4,5‐tetracarboxylate (btc), namely catena‐poly[[aqua{bis[(pyridin‐2‐yl)methyl]amine‐κ3N,N′,N′′}nickel(II)]‐μ‐2‐(2‐carboxylatophenyl)aceteto‐κ2O:O′], [Ni(C9H6O4)(C12H13N3)(H2O)]n, and (μ‐benzene‐1,2,4,5‐tetracarboxylato‐κ4O1,O2:O4,O5)bis(aqua{bis[(pyridin‐2‐yl)methyl]amine‐κ3N,N′,N′′}nickel(II)) bis(triaqua{bis[(pyridin‐2‐yl)methyl]amine‐κ3N,N′,N′′}nickel(II)) benzene‐1,2,4,5‐tetracarboxylate hexahydrate, [Ni2(C10H2O8)(C12H13N3)2(H2O)2]·[Ni(C12H13N3)(H2O)3]2(C10H2O8)·6H2O, (II), are presented. Compound (I) is a one‐dimensional polymer with hph acting as a bridging ligand and with the chains linked by weak C—H...O interactions. The structure of compound (II) is much more complex, with two independent NiII centres having different environments, one of them as part of centrosymmetric [Ni(bpma)(H2O)]2(btc) dinuclear complexes and the other in mononuclear [Ni(bpma)(H2O)3]2+ cations which (in a 2:1 ratio) provide charge balance for btc4− anions. A profuse hydrogen‐bonding scheme, where both coordinated and crystal water molecules play a crucial role, provides the supramolecular linkage of the different groups.  相似文献   

6.
Two novel polymers exhibiting metal–organic frameworks (MOFs) have been synthesized by the combination of a metal ion with a benzene‐1,3,5‐tricarboxylate ligand (BTC) and 1,10‐phenanthroline (phen) under hydrothermal conditions. The first compound, poly[[(μ4‐benzene‐1,3,5‐tricarboxylato‐κ4O:O′:O′′:O′′′)(μ‐hydroxido‐κ2O:O)bis(1,10‐phenanthroline‐κ2N,N′)dizinc(II)] 0.32‐hydrate], {[Zn2(C9H3O6)(OH)(C12H8N2)2]·0.32H2O}n, denoted Zn–MOF, forms a two‐dimensional network in which a binuclear Zn2 cluster serves as a 3‐connecting node; the BTC trianion also acts as a 3‐connecting centre. The overall topology is that of a 63 net. The phen ligands serve as appendages to the network and interdigitate with phen ligands belonging to adjacent parallel sheets. The second compound, poly[[(μ6‐benzene‐1,3,5‐tricarboxylato‐κ7O1,O1′:O1:O3:O3′:O5:O5′)(μ3‐hydroxido‐κ2O:O:O)(1,10‐phenanthroline‐κ2N,N′)dimanganese(II)] 1.26‐hydrate], {[Mn2(C9H3O6)(OH)(C12H8N2)]·1.26H2O}n, denoted Mn–MOF, exists as a three‐dimensional network in which an Mn4 cluster serves as a 6‐connecting unit, while the BTC trianion again plays the role of a 3‐connecting centre. The overall topology is that of the rutile net. Phen ligands act as appendages to the network and form the `S‐shaped' packing mode.  相似文献   

7.
Multifunctional 2‐amino‐5‐sulfobenzoic acid (H2afsb) can exhibit a variety of roles during the construction of supramolecular coordination polymers. The pendant carboxylic acid, sulfonic acid and amino groups could not only play a role in directing bonding but could also have the potential to act as hydrogen‐bond donors and acceptors, resulting in extended high‐dimensional supramolecular networks. Two new CuII coordination compounds, namely catena‐poly[[[diaquacopper(II)]‐μ‐1,6‐bis(1H‐1,2,4‐triazol‐1‐yl)hexane‐κ2N4:N4′] bis(3‐amino‐4‐carboxybenzenesulfonate) dihydrate], {[Cu(C10H16N6)2(H2O)2](C7H6NO5S)2·2H2O}n or {[Cu(bth)2(H2O)2](Hafsb)2·2H2O}n, (1), and bis(μ‐2‐amino‐5‐sulfonatobenzoato‐κ2O1:O1′)bis{μ‐1,2‐bis[(1H‐imidazol‐1‐yl)methyl]benzene‐κ2N3:N3′}bis[aquacopper(II)] trihydrate, [Cu2(C7H5NO5S)2(C14H14N4)2(H2O)2]·3H2O or [Cu2(afsb)2(obix)2(H2O)2]·3H2O, (2), have been obtained through the assembly between H2afsb and the CuII ion in the presence of the flexible N‐donor ligands 1,6‐bis(1H‐1,2,4‐triazol‐1‐yl)hexane (bth) and 1,2‐bis[(1H‐1,2,4‐triazol‐1‐yl)methyl]benzene (obix), respectively. Compound (1) consists of a cationic coordination polymeric chain and 3‐amino‐4‐carboxybenzenesulfonate (Hafsb) anions. Compound (2) exhibits an asymmetric dinuclear structure. There are hydrogen‐bonded networks within the lattices of (1) and (2). Interestingly, both (1) and (2) exhibit reversible dehydration–rehydration behaviour.  相似文献   

8.
Two three‐dimensional (3D) CdII coordination polymers, namely poly[[di‐μ‐aqua‐diaquabis{μ5‐4,4′,4′′‐[benzene‐1,3,5‐triyltris(oxy)]tribenzoato}tricadmium(II)] dihydrate], {[Cd3(C27H15O9)2(H2O)4]·2H2O}n, (I), and poly[[aqua{μ6‐4,4′,4′′‐[benzene‐1,3,5‐triyltris(oxy)]tribenzoato}(μ‐formato)[μ‐1,1′‐(1,4‐phenylene)bis(1H‐imidazole)]dicadmium(II)] dihydrate], {[Cd2(C27H15O9)(C12H10N4)(HCOO)(H2O)]·2H2O}n, (II), have been hydrothermally synthesized from the reaction system containing Cd(NO3)2·4H2O and the flexible tripodal ligand 1,3,5‐tris(4‐carboxyphenoxy)benzene (H3tcpb) via tuning of the auxiliary ligand. Both complexes have been characterized by single‐crystal X‐ray diffraction analysis, elemental analysis, IR spectra, powder X‐ray diffraction and thermogravimetric analysis. Complex (I) is a 3D framework constructed from trinuclear structural units and tcpb3? ligands in a μ5‐coordination mode. The central CdII atom of the trinuclear unit is located on a crystallographic inversion centre and adopts an octahedral geometry. The metal atoms are bridged by four synsyn carboxylate groups and two μ2‐water molecules to form trinuclear [Cd3(COO)42‐H2O)2] secondary building units (SBUs). These SBUs are incorporated into clusters by bridging carboxylate groups to produce pillars along the c axis. The one‐dimensional inorganic pillars are connected by tcpb3? linkers in a μ5‐coordination mode, thus forming a 3D network; its topology corresponds to the point symbol (42.62.82)(44.62)2(45.66.84)2. In contrast to (I), complex (II) is characterized by a 3D framework based on dinuclear cadmium SBUs, i.e. [Cd2(COO)3]. The two symmetry‐independent CdII ions display different coordinated geometries, namely octahedral [CdN2O4] and monocapped octahedral [CdO7]. The dinuclear SBUs are incorporated into clusters by bridging formate groups to produce pillars along the c axis. These pillars are further bridged either by tcpb3? ligands into sheets or by 1,4‐bis(imidazol‐1‐yl)benzene ligands into undulating layers, and finally these two‐dimensional surfaces interweave, forming a 3D structure with the point symbol (4.62)(47.614). Compound (II) exhibits reversible I2 uptake of 56.8 mg g?1 with apparent changes in the visible colour and the UV–Vis and fluorescence spectra, and therefore may be regarded as a potential reagent for the capture and release of I2.  相似文献   

9.
The preformed nickel(II) complex of the 14‐membered macrocyclic ligand 1,4,8,11‐tetraazacyclotetradecane (cyclam, L), when treated with 4,4′‐(dimethylsilanediyl)diphthalic acid (H4A) in a DMF/H2O mixture (4:1 v/v) under heating, leads to [Ni(L)]3(HA)2·3DMF ( I·DMF ). Redissolution of this compound in a DMF/H2O/MeOH mixture (4:1:30 v/v/v) with mild acidification under gentle heating results in the formation of a similar compound but containing water and methanol molecules of crystallization, [Ni(L)]3(HA)2·5H2O·2MeOH ( II·H2O ). At lower temperature and concentration of reactants and longer reaction time, single crystals of composition {[{Ni(L)}3(HA)2]·4CH3OH}n ( II·MeOH ) were isolated. Single‐crystal X‐ray diffraction analysis of this compound, which, according to PXRD is isostructural with II·H2O but different from I·DMF , revealed its two‐dimensional (2D) polymeric structure, i.e. poly[[bis{μ3‐4‐[(4‐carboxy‐3‐carboxylatophenyl)dimethylsilyl]benzene‐1,2‐dicarboxylato‐κ3O1:O2:O3′}tris(1,4,8,11‐tetraazacyclotetradecane‐κ4N)trinickel(II)] methanol tetrasolvate], {[Ni3(C18H13O8Si)2(C10H24N4)3]·4CH3OH}n. It is built up of the monoprotonated tricarboxylate HA3? ligand coordinated in a monodentate manner in the axial positions of two crystallographically independent NiII cations, one of which is located on a crystallographic inversion centre. Both metal ions adopt a slightly tetragonally elongated trans‐N4O2 octahedral geometry. The compound has a lamellar structure with polymeric layers oriented parallel to the (10) plane, which are in turn linked via hydrogen bonds involving protonated carboxylic acid groups of the ligand. Bulk compounds I·DMF and II·H2O were characterized by FT–IR and diffuse reflectance spectroscopy and thermogravimetry, which provide evidence of their structural differences.  相似文献   

10.
The self‐assembly of ditopic bis(1H‐imidazol‐1‐yl)benzene ligands ( L H) and the complex (2,2′‐bipyridyl‐κ2N,N′)bis(nitrato‐κO)palladium(II) affords the supramolecular coordination complex tris[μ‐bis(1H‐imidazol‐1‐yl)benzene‐κ2N3:N3′]‐triangulo‐tris[(2,2′‐bipyridyl‐κ2N,N′)palladium(II)] hexakis(hexafluoridophosphate) acetonitrile heptasolvate, [Pd3(C10H8N2)3(C12H10N4)3](PF6)6·7CH3CN, 2 . The structure of 2 was characterized in acetonitrile‐d3 by 1H/13C NMR spectroscopy and a DOSY experiment. The trimeric nature of supramolecular coordination complex 2 in solution was ascertained by cold spray ionization mass spectrometry (CSI–MS) and confirmed in the solid state by X‐ray structure analysis. The asymmetric unit of 2 comprises the trimetallic Pd complex, six PF6? counter‐ions and seven acetonitrile solvent molecules. Moreover, there is one cavity within the unit cell which could contain diethyl ether solvent molecules, as suggested by the crystallization process. The packing is stabilized by weak inter‐ and intramolecular C—H…N and C—H…F interactions. Interestingly, the crystal structure displays two distinct conformations for the L H ligand (i.e. syn and anti), with an all‐syn‐[Pd] coordination mode. This result is in contrast to the solution behaviour, where multiple structures with syn/anti‐ L H and syn/anti‐[Pd] are a priori possible and expected to be in rapid equilibrium.  相似文献   

11.
In catena‐poly[[aqua[1,3‐bis(pyridine‐3‐ylmethoxy)benzene‐κN]zinc(II)]‐μ2‐benzene‐1,4‐dicarboxylato‐κ2O1:O4], [Zn(C8H4O4)(C18H16N2O2)(H2O)]n, each ZnII centre is tetrahedrally coordinated by two O atoms of bridging carboxylate groups from two benzene‐1,4‐dicarboxylate anions (denoted L2−), one O atom from a water molecule and one N atom from a 1,3‐bis[(pyridin‐3‐yl)methoxy]benzene ligand (denoted bpmb). (Aqua)O—H...N hydrogen‐bonding interactions induce the formation of one‐dimensional helical [Zn(L)(bpmb)(H2O)]n chains which are interlinked through (aqua)O—H...O hydrogen‐bonding interactions, producing two‐dimensional corrugated sheets.  相似文献   

12.
Abstract. The 3D cobalt(II) coordination polymers [Co1.5(HDDB)(1,4‐bib)1.5(H2O)]n ( 1 ), and {[Co2(DDB)(1,3‐bib)22‐H2O)] · H2O}n ( 2 ) were assembled by mixed‐ligand synthetic strategy [H4DDB = 1,3‐bis(2,4‐dicarboxyphenyl) benzene, 1,3‐bib = 1,3‐bis(1H‐imidazol‐4‐yl)benzene, and 1,4‐bib = 1,4‐bis(1H‐imidazol‐4‐yl)benzene]. Their structures were determined by single‐crystal X‐ray diffraction analyses and further characterized by elemental analyses (EA), IR spectroscopy, powder X‐ray diffraction (PXRD), and thermogravimetric (TG) analyses. Single X‐ray diffraction analysis reveals that complex 1 is an interestingly 3D (3,3.6)‐connected (63)4(65 · 88 · 102) net, and complex 2 is an unprecedented dinuclear [Co2(COO)(μ2‐H2O)] SBUs based 3D (3,6)‐connected (3 · 6 · 7)(32 · 43 · 54 · 63 · 7 · 82) net. Additionally, the magnetic properties of 2 were investigated.  相似文献   

13.
Because of their versatile coordination modes and strong coordination ability for metals, triazole ligands can provide a wide range of possibilities for the construction of metal–organic frameworks. Three transition‐metal complexes, namely bis(μ‐1,2,4‐triazol‐4‐ide‐3‐carboxylato)‐κ3N 2,O :N 13N 1:N 2,O‐bis[triamminenickel(II)] tetrahydrate, [Ni2(C3HN3O2)2(NH3)6]·4H2O, (I), catena‐poly[[[diamminediaquacopper(II)]‐μ‐1,2,4‐triazol‐4‐ide‐3‐carboxylato‐κ3N 1:N 4,O‐[diamminecopper(II)]‐μ‐1,2,4‐triazol‐4‐ide‐3‐carboxylato‐κ3N 4,O :N 1] dihydrate], {[Cu2(C3HN3O2)2(NH3)4(H2O)2]·2H2O}n , (II), (μ‐5‐amino‐1,2,4‐triazol‐1‐ide‐3‐carboxylato‐κ2N 1:N 2)di‐μ‐hydroxido‐κ4O :O‐bis[triamminecobalt(III)] nitrate hydroxide trihydrate, [Co2(C3H2N4O2)(OH)2(NH3)6](NO3)(OH)·3H2O, (III), with different structural forms have been prepared by the reaction of transition metal salts, i.e. NiCl2, CuCl2 and Co(NO3)2, with 1,2,4‐triazole‐3‐carboxylic acid or 3‐amino‐1,2,4‐triazole‐5‐carboxylic acid hemihydrate in aqueous ammonia at room temperature. Compound (I) is a dinuclear complex. Extensive O—H…O, O—H…N and N—H…O hydrogen bonds and π–π stacking interactions between the centroids of the triazole rings contribute to the formation of the three‐dimensional supramolecular structure. Compound (II) exhibits a one‐dimensional chain structure, with O—H…O hydrogen bonds and weak O—H…N, N—H…O and C—H…O hydrogen bonds linking anions and lattice water molecules into the three‐dimensional supramolecular structure. Compared with compound (I), compound (III) is a structurally different dinuclear complex. Extensive N—H…O, N—H…N, O—H…N and O—H…O hydrogen bonding occurs in the structure, leading to the formation of the three‐dimensional supramolecular structure.  相似文献   

14.
The design and synthesis of metal–organic frameworks (MOFs) have attracted much interest due to the intriguing diversity of their architectures and topologies. However, building MOFs with different topological structures from the same ligand is still a challenge. Using 3‐nitro‐4‐(pyridin‐4‐yl)benzoic acid (HL) as a new ligand, three novel MOFs, namely poly[[(N,N‐dimethylformamide‐κO)bis[μ2‐3‐nitro‐4‐(pyridin‐4‐yl)benzoato‐κ3O,O′:N]cadmium(II)] N,N‐dimethylformamide monosolvate methanol monosolvate], {[Cd(C12H7N2O4)2(C3H7NO)]·C3H7NO·CH3OH}n, ( 1 ), poly[[(μ2‐acetato‐κ2O:O′)[μ3‐3‐nitro‐4‐(pyridin‐4‐yl)benzoato‐κ3O:O′:N]bis[μ3‐3‐nitro‐4‐(pyridin‐4‐yl)benzoato‐κ4O,O′:O′:N]dicadmium(II)] N,N‐dimethylacetamide disolvate monohydrate], {[Cd2(C12H7N2O4)3(CH3CO2)]·2C4H9NO·H2O}n, ( 2 ), and catena‐poly[[[diaquanickel(II)]‐bis[μ2‐3‐nitro‐4‐(pyridin‐4‐yl)benzoato‐κ2O:N]] N,N‐dimethylacetamide disolvate], {[Ni(C12H7N2O4)2(H2O)2]·2C4H9NO}n, ( 3 ), have been prepared. Single‐crystal structure analysis shows that the CdII atom in MOF ( 1 ) has a distorted pentagonal bipyramidal [CdN2O5] coordination geometry. The [CdN2O5] units as 4‐connected nodes are interconnected by L? ligands to form a fourfold interpenetrating three‐dimensional (3D) framework with a dia topology. In MOF ( 2 ), there are two crystallographically different CdII ions showing a distorted pentagonal bipyramidal [CdNO6] and a distorted octahedral [CdN2O4] coordination geometry, respectively. Two CdII ions are connected by three carboxylate groups to form a binuclear [Cd2(COO)3] cluster. Each binuclear cluster as a 6‐connected node is further linked by acetate groups and L? ligands to produce a non‐interpenetrating 3D framework with a pcu topology. MOF ( 3 ) contains two crystallographically distinct NiII ions on special positions. Each NiII ion adopts an elongated octahedral [NiN2O4] geometry. Each NiII ion as a 4‐connected node is linked by L? ligands to generate a two‐dimensional network with an sql topology, which is further stabilized by two types of intermolecular OW—HW…O hydrogen bonds to form a 3D supramolecular framework. MOFs ( 1 )–( 3 ) were also characterized by powder X‐ray diffraction, IR spectroscopy and thermogravimetic analysis. Furthermore, the solid‐state photoluminescence of HL and MOFs ( 1 ) and ( 2 ) have been investigated. The photoluminescence of MOFs ( 1 ) and ( 2 ) are enhanced and red‐shifted with respect to free HL. The gas adsorption investigation of MOF ( 2 ) indicates a good separation selectivity (71) of CO2/N2 at 273 K (i.e. the amount of CO2 adsorption is 71 times higher than N2 at the same pressure).  相似文献   

15.
Metal–organic frameworks (MOFs) have attracted much interest in the fields of gas separation and storage, catalysis synthesis, nonlinear optics, sensors, luminescence, magnetism, photocatalysis gradation and crystal engineering because of their diverse properties and intriguing topologies. A Cu–MOF, namely poly[[(μ2‐succinato‐κ2O:O′){μ2‐tris[4‐(1,2,4‐triazol‐1‐yl)phenyl]amine‐κ2N:N′}copper(II)] dihydrate], {[Cu(C4H4O4)(C24H18N10)]·2H2O}n or {[Cu(suc)(ttpa)]·2H2O}n, (I), was synthesized by the hydrothermal method using tris[4‐(1,2,4‐triazol‐1‐yl)phenyl]amine (ttpa) and succinate (suc2?), and characterized by IR, powder X‐ray diffraction (PXRD), luminescence, optical band gap and valence band X‐ray photoelectron spectroscopy (VB XPS). Cu–MOF (I) shows a twofold interpenetrating 4‐coordinated three‐dimensional CdSO4 topology with point symbol {65·8}. It presents good photocatalytic degradation of methylene blue (MB) and rhodamine B (RhB) under visible‐light irradiation. A photocatalytic mechanism was proposed and confirmed.  相似文献   

16.
The new bifunctional ligand 4,4′‐(adamantane‐1,3‐diyl)bis(1,2,4‐triazole) (tr2ad) and benzene‐1,3,5‐tricarboxylate sustain complementary coordination bridging for the three‐dimensional framework of poly[[bis[μ3‐4,4′‐(adamantane‐1,3‐diyl)bis(1,2,4‐triazole)‐κ3N1:N2:N1′]bis(μ4‐benzene‐1,3,5‐tricarboxylato‐κ4O1:O1′:O3:O5)di‐μ3‐hydroxido‐κ6O:O:O‐tetracopper(II)] dihydrate], {[Cu4(C9H3O6)2(OH)2(C14H18N6)2]·2H2O}n. The net node is a centrosymmetric (μ3‐OH)2Cu4 cluster [Cu—O = 1.9525 (14)–2.0770 (15) Å and Cu...Cu = 3.0536 (5) Å] involving two independent copper ions in tetragonal pyramidal CuO4N and trigonal bipyramidal CuO3N2 environments. One carboxylate group of the anion is bridging and the other two are monodentate, leading to the connection of three hydroxide clusters and the generation of neutral coordination layers separated by 9.3583 (5) Å. The interlayer linkage is effected by μ3‐tr2ad ligands, with one triazole group N1:N2‐bridging and the second monodentate [Cu—N = 1.9893 (19), 2.010 (2) and 2.411 (2) Å]. In total, the hydroxide clusters are linked to six close neighbors within the carboxylate layer and to four neighbors via tr2ad bridges. Hydrogen bonding of solvent water molecules to noncoordinated triazole N atoms and carboxylate groups provides two additional links for the net, which adopts a 12‐connected topology corresponding to hexagonal closest packing. The study also introduces a new type of bis(triazole) ligand, which may find wider applications for supramolecular synthesis.  相似文献   

17.
Coordination polymers constructed from metal ions and organic ligands have attracted considerable attention owing to their diverse structural topologies and potential applications. Ligands containing carboxylate groups are among the most extensively studied because of their versatile coordination modes. Reactions of benzene‐1,4‐dicarboxylic acid (H2BDC) and pyridine (py) with ZnII or CoII yielded two new coordination polymers, namely, poly[(μ4‐benzene‐1,4‐dicarboxylato‐κ4O:O′:O′′:O′′′)(pyridine‐κN)zinc(II)], [Zn(C8H4O2)(C5H5N)]n, (I), and catena‐poly[aqua(μ3‐benzene‐1,4‐dicarboxylato‐κ3O:O′:O′′)bis(pyridine‐κN)cobalt(II)], [Co(C8H4O2)(C5H5N)2(H2O)]n, (II). In compound (I), the ZnII cation is five‐coordinated by four carboxylate O atoms from four BDC2− ligands and one pyridine N atom in a distorted square‐pyramidal coordination geometry. Four carboxylate groups bridge two ZnII ions to form centrosymmetric paddle‐wheel‐like Zn22‐COO)4 units, which are linked by the benzene rings of the BDC2− ligands to generate a two‐dimensional layered structure. The two‐dimensional layer is extended into a three‐dimensional supramolecular structure with the help of π–π stacking interactions between the aromatic rings. Compound (II) has a one‐dimensional double‐chain structure based on Co22‐COO)2 units. The CoII cations are bridged by BDC2− ligands and are octahedrally coordinated by three carboxylate O atoms from three BDC2− ligands, one water O atom and two pyridine N atoms. Interchain O—H…O hydrogen‐bonding interactions link these chains to form a three‐dimensional supramolecular architecture.  相似文献   

18.
Bimetallic macrocyclic complexes have attracted the attention of chemists and various organic ligands have been used as molecular building blocks, but supramolecular complexes based on semi‐rigid organic ligands containing 1,2,4‐triazole have remained rare until recently. It is easier to obtain novel topologies by making use of asymmetric semi‐rigid ligands in the self‐assembly process than by making use of rigid ligands. A new semi‐rigid ligand, 3‐[(pyridin‐4‐ylmethyl)sulfanyl]‐5‐(quinolin‐2‐yl)‐4H‐1,2,4‐triazol‐4‐amine (L), has been synthesized and used to generate two novel bimetallic macrocycle complexes, namely bis{μ‐3‐[(pyridin‐4‐ylmethyl)sulfanyl]‐5‐(quinolin‐2‐yl)‐4H‐1,2,4‐triazol‐4‐amine}bis[(methanol‐κO)(nitrato‐κ2O,O′)nickel(II)] dinitrate, [Ni2(NO3)2(C17H14N6S)2(CH3OH)2](NO3)2, (I), and bis{μ‐3‐[(pyridin‐4‐ylmethyl)sulfanyl]‐5‐(quinolin‐2‐yl)‐4H‐1,2,4‐triazol‐4‐amine}bis[(methanol‐κO)(nitrato‐κ2O,O′)zinc(II)] dinitrate, [Zn2(NO3)2(C17H14N6S)2(CH3OH)2](NO3)2, (II), by solution reactions with the inorganic salts M(NO3)2 (M = Ni and Zn, respectively) in mixed solvents. In (I), two NiII cations with the same coordination environment are linked by L ligands through Ni—N bonds to form a bimetallic ring. Compound (I) is extended into a two‐dimensional network in the crystallographic ac plane via N—H…O, O—H…N and O—H…O hydrogen bonds, and neighbouring two‐dimensional planes are parallel and form a three‐dimensional structure via π–π stacking. Compound (II) contains two bimetallic rings with the same coordination environment of the ZnII cations. The ZnII cations are bridged by L ligands through Zn—N bonds to form the bimetallic rings. One type of bimetallic ring constructs a one‐dimensional nanotube via O—H…O and N—H…O hydrogen bonds along the crystallographic a direction, and the other constructs zero‐dimensional molecular cages via O—H…O and N—H…O hydrogen bonds. They are interlinked into a two‐dimensional network in the ac plane through extensive N—H…O hydrogen bonds, and a three‐dimensional supramolecular architecture is formed via π–π interactions between the centroids of the benzene rings of the quinoline ring systems.  相似文献   

19.
A new cobalt(II) coordination polymer (CP), poly[[bis[μ6‐4‐(4‐carboxylatophenoxy)benzene‐1,3‐dicarboxylato‐κ6O1:O1:O3:O3′:O4:O4′]bis(1,10‐phenanthroline‐κ2N,N′)tricobalt(II)] 0.72‐hydrate], {[Co3(C15H7O7)2(C12H8N2)2]·0.72H2O}n, (I), is constructed from CoII ions and 4‐(4‐carboxyphenoxy)isophthalate (cpoia3−) and 1,10‐phenanthroline (phen) ligands. Based on centrosymmetric trinuclear [Co3(phen)2(COO)6] secondary building units (SBUs), the structure of (I) is a three‐dimensional CP with a (3,6)‐connected net and point symbol (42.6)2(44.62.87.102). The positions of four [Co3(phen)2(COO)6] SBUs and four cpoia3− ligands reproduce a Chinese‐knot‐shaped arrangement along the ab plane. (I) has been characterized by single‐crystal X‐ray diffraction, IR spectroscopy, powder X‐ray diffraction (PXRD) and thermostability analysis. It shows a good thermal stability from room temperature to 673 K. In addition, the temperature dependence of the magnetic properties was measured.  相似文献   

20.
Crystals of poly[[aqua[μ3‐4‐carboxy‐1‐(4‐carboxylatobenzyl)‐2‐propyl‐1H‐imidazole‐5‐carboxylato‐κ5O1O1′:N3,O4:O5][μ4‐1‐(4‐carboxylatobenzyl)‐2‐propyl‐1H‐imidazole‐4‐carboxylato‐κ7N3,O4:O4,O4′:O1,O1′:O1]cadmium(II)] monohydrate], {[Cd2(C15H14N2O4)(C16H14N2O6)(H2O)]·H2O}n or {[Cd2(Hcpimda)(cpima)(H2O)]·H2O}n, (I), were obtained from 1‐(4‐carboxybenzyl)‐2‐propyl‐1H‐imidazole‐4,5‐dicarboxylic acid (H3cpimda) and cadmium(II) chloride under hydrothermal conditions. The structure indicates that in‐situ decarboxylation of H3cpimda occurred during the synthesis process. The asymmetric unit consists of two Cd2+ centres, one 4‐carboxy‐1‐(4‐carboxylatobenzyl)‐2‐propyl‐1H‐imidazole‐5‐carboxylate (Hcpimda2−) anion, one 1‐(4‐carboxylatobenzyl)‐2‐propyl‐1H‐imidazole‐4‐carboxylate (cpima2−) anion, one coordinated water molecule and one lattice water molecule. One Cd2+ centre, i.e. Cd1, is hexacoordinated and displays a slightly distorted octahedral CdN2O4 geometry. The other Cd centre, i.e. Cd2, is coordinated by seven O atoms originating from one Hcpimda2− ligand and three cpima2− ligands. This Cd2+ centre can be described as having a distorted capped octahedral coordination geometry. Two carboxylate groups of the benzoate moieties of two cpima2− ligands bridge between Cd2 centres to generate [Cd2O2] units, which are further linked by two cpima2− ligands to produce one‐dimensional (1D) infinite chains based around large 26‐membered rings. Meanwhile, adjacent Cd1 centres are linked by Hcpimda2− ligands to generate 1D zigzag chains. The two types of chains are linked through a μ2‐η2 bidentate bridging mode from an O atom of an imidazole carboxylate unit of cpima2− to give a two‐dimensional (2D) coordination polymer. The simplified 2D net structure can be described as a 3,6‐coordinated net which has a (43)2(46.66.83) topology. Furthermore, the FT–IR spectroscopic properties, photoluminescence properties, powder X‐ray diffraction (PXRD) pattern and thermogravimetric behaviour of the polymer have been investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号