首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel two‐dimensional (2D) ZnII coordination framework, poly[[μ‐1,3‐bis(2‐methyl‐1H‐imidazol‐1‐yl)benzene](μ‐5‐nitrobenzene‐1,3‐dicarboxylato)zinc(II)], [Zn(C8H3NO6)(C14H14N4)]n or [Zn(NO2‐BDC)(1,3‐BMIB)]n [1,3‐BMIB is 1,3‐bis(2‐methyl‐1H‐imidazol‐1‐yl)benzene and NO2‐H2BDC is 5‐nitrobenzene‐1,3‐dicarboxylic acid], has been prepared and characterized by IR, elemental analysis, thermal analysis and single‐crystal X‐ray diffraction. Single‐crystal X‐ray diffraction analysis revealed that the compound is a new 2D polymer with a 63 topology parallel to the (10) crystal planes based on left‐handed helices, right‐handed helical NO2‐BDC–Zn chains and [Zn2(1,3‐BMIB)2]n clusters. In the crystal, adjacent layers are further connected by C—H…O hydrogen bonds, C—H…π interactions, C—O…π interactions and N—O…π interactions to form a three‐dimensional structure in the solid state. In addition, the compound exhibits strong fluorescence emissions in the solid state at room temperature.  相似文献   

2.
Hydrazone derivatives exhibit a wide range of biological activities, while pyrazolo[3,4‐b]quinoline derivatives, on the other hand, exhibit both antimicrobial and antiviral activity, so that all new derivatives in these chemical classes are potentially of value. Dry grinding of a mixture of 2‐chloroquinoline‐3‐carbaldehyde and 4‐methylphenylhydrazinium chloride gives (E)‐1‐[(2‐chloroquinolin‐3‐yl)methylidene]‐2‐(4‐methylphenyl)hydrazine, C17H14ClN3, (I), while the same regents in methanol in the presence of sodium cyanoborohydride give 1‐(4‐methylphenyl)‐4,9‐dihydro‐1H‐pyrazolo[3,4‐b]quinoline, C17H15N3, (II). The reactions between phenylhydrazinium chloride and either 2‐chloroquinoline‐3‐carbaldehyde or 2‐chloro‐6‐methylquinoline‐3‐carbaldehyde give, respectively, 1‐phenyl‐1H‐pyrazolo[3,4‐b]quinoline, C16H11N3, (III), which crystallizes in the space group Pbcn as a nonmerohedral twin having Z′ = 3, or 6‐methyl‐1‐phenyl‐1H‐pyrazolo[3,4‐b]quinoline, C17H13N3, (IV), which crystallizes in the space group R. The molecules of compound (I) are linked into sheets by a combination of N—H…N and C—H…π(arene) hydrogen bonds, and the molecules of compound (II) are linked by a combination of N—H…N and C—H…π(arene) hydrogen bonds to form a chain of rings. In the structure of compound (III), one of the three independent molecules forms chains generated by C—H…π(arene) hydrogen bonds, with a second type of molecule linked to the chains by a second C—H…π(arene) hydrogen bond and the third type of molecule linked to the chain by multiple π–π stacking interactions. A single C—H…π(arene) hydrogen bond links the molecules of compound (IV) into cyclic centrosymmetric hexamers having (S6) symmetry, which are themselves linked into a three‐dimensional array by π–π stacking interactions.  相似文献   

3.
1‐Benzoylthioureas contain both carbonyl and thiocarbonyl functional groups and are of interest for their biological activity, metal coordination ability and involvement in hydrogen‐bond formation. Two novel 1‐benzoylthiourea derivatives, namely 1‐benzoyl‐3‐(3,4‐dimethoxyphenyl)thiourea, C16H16N2O3S, (I), and 1‐benzoyl‐3‐(2‐hydroxypropyl)thiourea, C11H14N2O2S, (II), have been synthesized and characterized. Compound (I) crystallizes in the space group P , while (II) crystallizes in the space group P 21/c . In both structures, intramolecular N—H…O hydrogen bonding is present. The resulting six‐membered pseudo‐rings are quasi‐aromatic and, in each case, interact with phenyl rings via stacking‐type interactions. C—H…O, C—H…S and C—H…π interactions are also present. In (I), there is one molecule in the asymmetric unit. Pairs of molecules are connected via two intermolecular N—H…S hydrogen bonds, forming centrosymmetric dimers. In (II), there are two symmetry‐independent molecules that differ mainly in the relative orientations of the phenyl rings with respect to the thiourea cores. Additional strong hydrogen‐bond donor and acceptor –OH groups participate in the formation of intermolecular N—H…O and O—H…S hydrogen bonds that join molecules into chains extending in the [001] direction.  相似文献   

4.
Alkanolamines have been known for their high CO2 absorption for over 60 years and are used widely in the natural gas industry for reversible CO2 capture. In an attempt to crystallize a salt of (RS)‐2‐(3‐benzoylphenyl)propionic acid with 2‐amino‐2‐methylpropan‐1‐ol, we obtained instead a polymorph (denoted polymorph II) of bis(1‐hydroxy‐2‐methylpropan‐2‐aminium) carbonate, 2C4H12NO+·CO32−, (I), suggesting that the amine group of the former compound captured CO2 from the atmosphere forming the aminium carbonate salt. This new polymorph was characterized by single‐crystal X‐ray diffraction analysis at low temperature (100 K). The salt crystallizes in the monoclinic system (space group C2/c, Z = 4), while a previously reported form of the same salt (denoted polymorph I) crystallizes in the triclinic system (space group P, Z = 2) [Barzagli et al. (2012). ChemSusChem, 5 , 1724–1731]. The asymmetric unit of polymorph II contains one 1‐hydroxy‐2‐methylpropan‐2‐aminium cation and half a carbonate anion, located on a twofold axis, while the asymmetric unit of polymorph I contains two cations and one anion. These polymorphs exhibit similar structural features in their three‐dimensional packing. Indeed, similar layers of an alternating cation–anion–cation neutral structure are observed in their molecular arrangements. Within each layer, carbonate anions and 1‐hydroxy‐2‐methylpropan‐2‐aminium cations form planes bound to each other through N—H…O and O—H…O hydrogen bonds. In both polymorphs, the layers are linked to each other via van der Waals interactions and C—H…O contacts. In polymorph II, a highly directional C—H…O contact (C—H…O = 156°) shows as a hydrogen‐bonding interaction. Periodic theoretical density functional theory (DFT) calculations indicate that both polymorphs present very similar stabilities.  相似文献   

5.
4‐Antipyrine [4‐amino‐1,5‐dimethyl‐2‐phenyl‐1H‐pyrazol‐3(2H)‐one] and its derivatives exhibit a range of biological activities, including analgesic, antibacterial and anti‐inflammatory, and new examples are always of potential interest and value. 2‐(4‐Chlorophenyl)‐N‐(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)acetamide, C19H18ClN3O2, (I), crystallizes with Z′ = 2 in the space group P, whereas its positional isomer 2‐(2‐chlorophenyl)‐N‐(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)acetamide, (II), crystallizes with Z′ = 1 in the space group C2/c; the molecules of (II) are disordered over two sets of atomic sites having occupancies of 0.6020 (18) and 0.3980 (18). The two independent molecules of (I) adopt different molecular conformations, as do the two disorder components in (II), where the 2‐chlorophenyl substituents adopt different orientations. The molecules of (I) are linked by a combination of N—H…O and C—H…O hydrogen bonds to form centrosymmetric four‐molecule aggregates, while those of (II) are linked by the same types of hydrogen bonds forming sheets. The related compound N‐(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)‐2‐(3‐methoxyphenyl)acetamide, C20H21N3O3, (III), is isomorphous with (I) but not strictly isostructural; again the two independent molecules adopt different molecular conformations, and the molecules are linked by N—H…O and C—H…O hydrogen bonds to form ribbons. Comparisons are made with some related structures, indicating that a hydrogen‐bonded R22(10) ring is the common structural motif.  相似文献   

6.
The structure of the new salt 1‐(o‐tolyl)biguanidium chloride, C9H14N5+·Cl?, has been determined by single‐crystal X‐ray diffraction. The salt crystallizes in the monoclinic space group C2/c. In this structure, the chloride and biguanidium hydrophilic ions are mostly connected to each other via N—H…N and N—H…Cl hydrogen bonds to form layers parallel to the ab plane around y = and y = . The 2‐methylbenzyl groups form layers between these layers around y = 0 and y = , with the methyl group forming C—H…π interactions with the aromatic ring. Intermolecular interactions on the Hirshfeld surface were investigated in terms of contact enrichment and electrostatic energy, and confirm the role of strong hydrogen bonds along with hydrophobic interactions. A correlation between electrostatic energy and contact enrichment is found only for the strongly attractive (N—H…Cl?) and repulsive contacts. Electrostatic energies between ions reveal that the interacting biguanidium cation pairs are repulsive and that the crystal is maintained by attractive cation…Cl? dimers. The vibrational absorption bands were identified by IR spectroscopy.  相似文献   

7.
Methyl 4‐(4‐fluorophenyl)‐6‐methyl‐2‐oxo‐1,2,3,4‐tetrahydropyrimidine‐5‐carboxylate, ( I ), was found to exhibit solvatomorphism. The compound was prepared using a classic Biginelli reaction under mild conditions, without using catalysts and in a solvent‐free environment. Single crystals of two solvatomorphs and one anhydrous form of ( I ) were obtained through various crystallization methods. The anhydrous form, C13H13FN2O3, was found to crystallize in the monoclinic space group C2/c. It showed one molecule in the asymmetric unit. The solvatomorph with included carbon tetrachloride, C13H13FN2O3·0.25CCl4, was found to crystallize in the monoclinic space group P2/n. The asymmetric unit revealed two molecules of ( I ) and one disordered carbon tetrachloride solvent molecule that lies on a twofold axis. A solvatomorph including ethyl acetate, C13H13FN2O3·0.5C4H8O2, was found to crystallize in the triclinic space group P with one molecule of ( I ) and one solvent molecule on an inversion centre in the asymmetric unit. The solvent molecules in the solvatomorphs were found to be disordered, with a unique case of crystallographically induced disorder in ( I ) crystallized with ethyl acetate. Hydrogen‐bonding interactions, for example, N—H…O=C, C—H…O=C, C—H…F and C—H…π, contribute to the crystal packing with the formation of a characteristic dimer through N—H…O=C interactions in all three forms. The solvatomorphs display additional interactions, such as C—F…N and C—Cl…π, which are responsible for their molecular arrangement. The thermal properties of the forms were analysed through differential scanning calorimetry (DSC), hot stage microscopy (HSM) and thermogravimetric analysis (TGA) experiments.  相似文献   

8.
Molecular crystals exhibiting polar symmetry are important paradigms for developing new electrooptical materials. Though accessing bulk polarity still presents a significant challenge, in some cases it may be rationalized as being associated with the specific molecular shapes and symmetries and subtle features of supramolecular interactions. In the crystal structure of 3,5,7‐trinitro‐1‐azaadamantane, C9H12N4O6, the polar symmetry of the molecular arrangement is a result of complementary prerequisites, namely the C3v symmetry of the molecules is suited to the generation of polar stacks and the inherent asymmetry of the principal supramolecular bonding, as is provided by NO2(lone pair)…NO2(π‐hole) interactions. These bonds arrange the molecules into a trigonal network. In spite of the apparent simplicity, the structure comprises three unique molecules (Z′ =  +  + ), two of which are donors and acceptors of three N…O interactions and the third being primarily important for weak C—H…O hydrogen bonding. These distinct structural roles agree with the results of Hirshfeld surface analysis. A set of weak C—H…O and C—H…N hydrogen bonds yields three kinds of stacks. The orientation of the stacks is identical and therefore the polarity of each molecule contributes additively to the net dipole moment of the crystal. This suggests a special potential of asymmetric NO2(lone pair)…NO2(π‐hole) interactions for the supramolecular synthesis of acentric materials.  相似文献   

9.
It has been observed that when electron‐rich naphthyl rings are present in chalcones they can participate in π–π stacking interactions, and this can play an important role in orientating inhibitors within the active sites of enzymes, while chalcones containing heterocyclic substituents additionally exhibit fungistatic and fungicidal properties. With these considerations in mind, three new chalcones containing 2‐naphthyl substituents were prepared. 3‐(4‐Fluorophenyl)‐1‐(naphthalen‐2‐yl)prop‐2‐en‐1‐one, C19H13FO, (I), crystallizes with Z ′ = 2 in the space group P and the four molecules in the unit cell adopt an arrangement which resembles that in the space group P 21/a . Although 3‐(4‐bromophenyl)‐1‐(naphthalen‐2‐yl)prop‐2‐en‐1‐one, C19H13BrO, (II), with Z ′ = 1, is not isostructural with (I), the molecules of (I) and (II) adopt very similar conformations. In 1‐(naphthalen‐2‐yl)‐3‐(thiophen‐2‐yl)prop‐2‐en‐1‐one, C17H12OS, (III), the thiophene unit is disordered over two sets of atomic sites, with occupancies of 0.780 (3) and 0.220 (3), which are related by a near 180° rotation of the thiophene unit about its exocyclic C—C bond. The molecules of compound (I) are linked by three independent C—H…π(arene) hydrogen bonds to form centrosymmetric octamolecular aggregates, whereas the molecules of compound (II) are linked into molecular ladders by a combination of C—H…π(arene) and C—Br…π(arene) interactions, and those of compound (III) are linked into centrosymmetric dimers by C—H…π(thiophene) interactions.  相似文献   

10.
Crystal structures are reported for three fluoro‐ or chloro‐substituted 1′‐deoxy‐1′‐phenyl‐β‐D‐ribofuranoses, namely 1′‐deoxy‐1′‐(2,4,5‐trifluorophenyl)‐β‐D‐ribofuranose, C11H11F3O4, (I), 1′‐deoxy‐1′‐(2,4,6‐trifluorophenyl)‐β‐D‐ribofuranose, C11H11F3O4, (II), and 1′‐(4‐chlorophenyl)‐1′‐deoxy‐β‐D‐ribofuranose, C11H13ClO4, (III). The five‐membered furanose ring of the three compounds has a conformation between a C2′‐endo,C3′‐exo twist and a C2′‐endo envelope. The ribofuranose groups of (I) and (III) are connected by intermolecular O—H...O hydrogen bonds to six symmetry‐related molecules to form double layers, while the ribofuranose group of (II) is connected by O—H...O hydrogen bonds to four symmetry‐related molecules to form single layers. The O...O contact distance of the O—H...O hydrogen bonds ranges from 2.7172 (15) to 2.8895 (19) Å. Neighbouring double layers of (I) are connected by a very weak intermolecular C—F...π contact. The layers of (II) are connected by one C—H...O and two C—H...F contacts, while the double layers of (III) are connected by a C—H...Cl contact. The conformations of the molecules are compared with those of seven related molecules. The orientation of the benzene ring is coplanar with the H—C1′ bond or bisecting the H—C1′—C2′ angle, or intermediate between these positions. The orientation of the benzene ring is independent of the substitution pattern of the ring and depends mainly on crystal‐packing effects.  相似文献   

11.
The synthesis, 1H and 13C NMR spectra, and X‐ray structures are described for three dialkoxy ethynylnitrobenzenes that differ only in the length of the alkoxy chain, namely 1‐ethynyl‐2‐nitro‐4,5‐dipropoxybenzene, C14H17NO4, 1,2‐dibutoxy‐4‐ethynyl‐5‐nitrobenzene, C16H21NO4, and 1‐ethynyl‐2‐nitro‐4,5‐dipentoxybenzene, C18H25NO4. Despite the subtle changes in molecular structure, the crystal structures of the three compounds display great diversity. Thus, 1‐ethynyl‐2‐nitro‐4,5‐dipropoxybenzene crystallizes in the trigonal crystal system in the space group , with Z = 18, 1,2‐dibutoxy‐4‐ethynyl‐5‐nitrobenzene crystallizes in the monoclinic crystal system in the space group P 21/c , with Z = 4, and 1‐ethynyl‐2‐nitro‐4,5‐dipentoxybenzene crystallizes in the triclinic crystal system in the space group , with Z = 2. The crystal structure of 1‐ethynyl‐2‐nitro‐4,5‐dipropoxybenzene is dominated by planar hexamers formed by a bifurcated alkoxy sp‐C—H…O,O′ interaction, while the structure of the dibutoxy analogue is dominated by planar ribbons of molecules linked by a similar bifurcated alkoxy sp‐C—H…O,O′ interaction. In contrast, the dipentoxy analogue forms ribbons of molecules alternately connected by a self‐complementary sp‐C—H…O2N interaction and a self‐complementary sp2‐C—H…O2N interaction. Disordered solvent was included in the crystals of 1‐ethynyl‐2‐nitro‐4,5‐dipropoxybenzene and its contribution was removed during refinement.  相似文献   

12.
The crystal structures of three quinuclidine‐based compounds, namely (1‐azabicyclo[2.2.2]octan‐3‐ylidene)hydrazine monohydrate, C7H13N3·H2O ( 1 ), 1,2‐bis(1‐azabicyclo[2.2.2]octan‐3‐ylidene)hydrazine, C14H22N4 ( 2 ), and 1,2‐bis(1‐azoniabicyclo[2.2.2]octan‐3‐ylidene)hydrazine dichloride, C14H24N42+·2Cl? ( 3 ), are reported. In the crystal structure of 1 , the quinuclidine‐substituted hydrazine and water molecules are linked through N—H…O and O—H…N hydrogen bonds, forming a two‐dimensional array. The compound crystallizes in the centrosymmetric space group P21/c. Compound 2 was refined in the space group Pccn and exhibits no hydrogen bonding. However, its hydrochloride form 3 crystallizes in the noncentrosymmetric space group Pc. It shows a three‐dimensional network structure via intermolecular hydrogen bonding (N—H…C and N/C—H…Cl). Compound 3 , with its acentric structure, shows strong second harmonic activity.  相似文献   

13.
Aminobenzylnaphthols are a class of compounds containing a large aromatic molecular surface which makes them suitable candidates to study the role of C—H…π interactions. We have investigated the effect of methyl or methoxy substituents on the assembling of aromatic units by preparing and determining the crystal structures of (S,S)‐1‐{(4‐methylphenyl)[(1‐phenylethyl)amino]methyl}naphthalen‐2‐ol, C26H25NO, and (S,S)‐1‐{(4‐methoxyphenyl)[(1‐phenylethyl)amino]methyl}naphthalen‐2‐ol, C26H25NO2. The methyl group influenced the overall crystal packing even if the H atoms of the methyl group did not participate directly either in hydrogen bonding or C—H…π interactions. The introduction of the methoxy moiety caused the formation of new hydrogen bonds, in which the O atom of the methoxy group was directly involved. Moreover, the methoxy group promoted the formation of an interesting C—H…π interaction which altered the orientation of an aromatic unit.  相似文献   

14.
The reaction of 5‐chloro‐3‐methyl‐1‐phenyl‐1H‐pyrazole‐4‐carbaldehyde with phenols under basic conditions yields the corresponding 5‐aryloxy derivatives; the subsequent reaction of these carbaldehydes with substituted acetophenones yields the corresponding chalcones, which in turn undergo cyclocondensation reactions with hydrazine in the presence of acetic acid to form N‐acetylated reduced bipyrazoles. Structures are reported for three 5‐aryloxycarbaldehydes and the 5‐piperidino analogue, and for two reduced bipyrazole products. 5‐(2‐Chlorophenoxy)‐3‐methyl‐1‐phenyl‐1H‐pyrazole‐4‐carbaldehyde, C17H13ClN2O2, (II), which crystallizes with Z′ = 2 in the space group P, exhibits orientational disorder of the carbaldehyde group in each of the two independent molecules. Each of 3‐methyl‐5‐(4‐nitrophenoxy)‐1‐phenyl‐1H‐pyrazole‐4‐carbaldehyde, C17H13N3O4, (IV), 3‐methyl‐5‐(naphthalen‐2‐yloxy)‐1‐phenyl‐1H‐pyrazole‐4‐carbaldehyde, C21H16N2O2, (V), and 3‐methyl‐1‐phenyl‐5‐(piperidin‐1‐yl)‐1H‐pyrazole‐4‐carbaldehyde, C16H19N3O, (VI), (3RS)‐2‐acetyl‐5‐(4‐azidophenyl)‐5′‐(2‐chlorophenoxy)‐3′‐methyl‐1′‐phenyl‐3,4‐dihydro‐1′H,2H‐[3,4′‐bipyrazole] C27H22ClN7O2, (IX) and (3RS)‐2‐acetyl‐5‐(4‐azidophenyl)‐3′‐methyl‐5′‐(naphthalen‐2‐yloxy)‐1′‐phenyl‐3,4‐dihydro‐1′H,2H‐[3,4′‐bipyrazole] C31H25N7O2, (X), has Z′ = 1, and each is fully ordered. The new compounds have all been fully characterized by analysis, namely IR spectroscopy, 1H and 13C NMR spectroscopy, and mass spectrometry. In each of (II), (V) and (IX), the molecules are linked into ribbons, generated respectively by combinations of C—H…N, C—H…π and C—Cl…π interactions in (II), C—H…O and C—H…π hydrogen bonds in (V), and C—H…N and C—H…O hydrogen bonds in (IX). The molecules of compounds (IV) and (IX) are both linked into sheets, by multiple C—H…O and C—H…π hydrogen bonds in (IV), and by two C—H…π hydrogen bonds in (IX). A single C—H…N hydrogen bond links the molecules of (X) into centrosymmetric dimers. Comparisons are made with the structures of some related compounds.  相似文献   

15.
An efficient synthesis of 1‐arylisochromeno[3,4‐d][1,2,3]triazol‐5(1H)‐ones, involving the diazotization of 3‐amino‐4‐arylamino‐1H‐isochromen‐1‐ones in weakly acidic solution, has been developed and the spectroscopic characterization and crystal structures of four examples are reported. The molecules of 1‐phenylisochromeno[3,4‐d][1,2,3]triazol‐5(1H)‐one, C15H9N3O2, (I), are linked into sheets by a combination of C—H…N and C—H…O hydrogen bonds, while the structures of 1‐(2‐methylphenyl)isochromeno[3,4‐d][1,2,3]triazol‐5(1H)‐one, C16H11N3O2, (II), and 1‐(3‐chlorophenyl)isochromeno[3,4‐d][1,2,3]triazol‐5(1H)‐one, C15H8ClN3O2, (III), each contain just one hydrogen bond which links the molecules into simple chains, which are further linked into sheets by π‐stacking interactions in (II) but not in (III). In the structure of 1‐(4‐chlorophenyl)isochromeno[3,4‐d][1,2,3]triazol‐5(1H)‐one, (IV), isomeric with (III), a combination of C—H…O and C—H…π(arene) hydrogen bonds links the molecules into sheets. When compound (II) was exposed to a strong acid in methanol, quantitative conversion occurred to give the ring‐opened transesterification product methyl 2‐[4‐hydroxy‐1‐(2‐methylphenyl)‐1H‐1,2,3‐triazol‐5‐yl]benzoate, C17H15N3O3, (V), where the molecules are linked by paired O—H…O hydrogen bonds to form centrosymmetric dimers.  相似文献   

16.
The polyfluorinated title compounds, [MBr2(C18H16F8N2O2)] or [4,4′‐(HCF2CF2CH2OCH2)2‐2,2′‐bpy]MBr2, ( 1 ) (M = Pd and bpy is bipyridine) and ( 2 ) (M = Pt), have –CH(α)2OCH(β)2CF2CF2H side chains with methylene H‐atom donors at the α and β sites, and methine H‐atom donors at the terminal sites, in addition to aromatic H‐atom donors. In contrast to the original expectation of isomorphous structures, ( 1 ) crystallizes in the space group C2/c and ( 2 ) in P21/n, with similar unit‐cell volumes and Z = 4. The asymmetric unit of ( 1 ) is one half of the molecule, which resides on a crystallographic twofold axis. Both ( 1 ) and ( 2 ) display stacking of the molecules, indicating a planar (bpy)MBr2 skeleton in each case. The structure of ( 1 ) exhibits columns with C—H(β)…Br hydrogen bonds between consecutive layers which conforms to a static (β,β) linkage between layers. In the molecular plane, ( 1 ) shows double C—H(α)…Br hydrogen bonds self‐repeating along the b axis, the planar molecules being connected into infinite belts. Compound ( 2 ) has no crystallographic symmetry and forms π‐dimer pairs as supermolecules, which then stack parallel to the a axis. The π‐dimer‐pair supermolecules exhibit (Pt—)Br…Br(—Pt) contacts [3.6937 (7) Å] to neighbouring π‐dimer pairs crosslinking the columns. The structure of ( 2 ) reveals many C—H…F(—C) interactions between F atoms and aromatic C—H groups, in addition to those between F atoms and methylene C—H groups.  相似文献   

17.
In the crystal structure of O,O′‐diethyl N‐(2,4,6‐trimethylphenyl)thiophosphate, C13H22NO2PS, two symmetrically independent thiophosphoramide molecules are linked through N—H…S and N—H…π hydrogen bonds to form a noncentrosymmetric dimer, with Z′ = 2. The strengths of the hydrogen bonds were evaluated using density functional theory (DFT) at the M06‐2X level within the 6‐311++G(d,p) basis set, and by considering the quantum theory of atoms in molecules (QTAIM). It was found that the N—H…S hydrogen bond is slightly stronger than the N—H…π hydrogen bond. This is reflected in differences between the calculated N—H stretching frequencies of the isolated molecules and the frequencies of the same N—H units involved in the different hydrogen bonds of the hydrogen‐bonded dimer. For these hydrogen bonds, the corresponding charge transfers, i.e. lp (or π)→σ*, were studied, according to the second‐order perturbation theory in natural bond orbital (NBO) methodology. Hirshfeld surface analysis was applied for a detailed investigation of all the contacts participating in the crystal packing.  相似文献   

18.
Subtle modifications of N‐donor ligands can result in complexes with very different compositions and architectures. In the complex catena‐poly[[bis{1‐[(1H‐benzotriazol‐1‐yl)methyl]‐1H‐imidazole‐κN 3}copper(II)]‐μ‐benzene‐1,3‐dicarboxylato‐κ3O 1,O 1′:O 3], {[Cu(C8H4O4)(C10H9N5)2(H2O)]·2H2O}n , each CuII ion is six‐coordinated by two N atoms from two crystallographically independent 1‐[(1H‐benzotriazol‐1‐yl)methyl]‐1H‐imidazole (bmi) ligands, by three O atoms from two symmetry‐related benzene‐1,3‐dicarboxylate (bdic2−) ligands and by one water molecule, leading to a distorted CuN2O4 octahedral coordination environment. The CuII ions are connected by bridging bdic2− anions to generate a one‐dimensional chain. The bmi ligands coordinate to the CuII ions in monodentate modes and are pendant on opposite sides of the main chain. In the crystal, the chains are linked by O—H…O and O—H…N hydrogen bonds, as well as by π–π interactions, into a three‐dimensional network. A thermogravimetric analysis was carried out and the fluorescence behaviour of the complex was also investigated.  相似文献   

19.
The sulfur coordination polymer catena‐poly[zinc(II)‐μ2‐bis[5‐(methylsulfanyl)‐2‐sulfanylidene‐2,3‐dihydro‐1,3,4‐thiadiazol‐3‐ido‐κ2N3:S]], [Zn(C3H3N2S3)2]n or [Zn2MTT4]n, constructed from Zn2+ ions and 5‐methylsulfanyl‐1,3,4‐thiadiazole‐2‐thione (HMTT), was synthesized successfully and structurally characterized. [Zn2MTT4]n crystallizes in the tetragonal space group I (No. 82). Each MTT? ligand (systematic name: 5‐methylsulfanyl‐2‐sulfanylidene‐2,3‐dihydro‐1,3,4‐thiadiazol‐3‐ide) coordinates to two different ZnII ions, one via the thione group and the other via a ring N atom, with one ZnII atom being in a tetrahedral ZnS4 and the other in a tetrahedral ZnN4 coordination environment. These tetrahedral ZnS4 and ZnN4 units are alternately linked by the organic ligands, forming a one‐dimensional chain structure along the c axis. The one‐dimensional chains are further linked via C—H…N and C—H…S hydrogen bonds to form a three‐dimensional network adopting an ABAB‐style arrangement that lies along both the a and b axes. The three‐dimensional Hirshfeld surface analysis and two‐dimensional (2D) fingerprint plots confirm the major interactions as C—H…S hydrogen bonds with a total of 35.1%, while 7.4% are C—H…N hydrogen‐bond interactions. [Zn2MTT4]n possesses high thermal and chemical stability and a linear temperature dependence of the bandgap from room temperature to 270 °C. Further investigation revealed that the bandgap changes sharply in ammonia, but only fluctuates slightly in other solvents, indicating its promising application as a selective sensor.  相似文献   

20.
The molecules of 3‐amino‐4‐anilino‐1H‐isochromen‐1‐one, C15H12N2O2, (I), and 3‐amino‐4‐[methyl(phenyl)amino]‐1H‐isochromen‐1‐one, C16H14N2O2, (II), adopt very similar conformations, with the substituted amino group PhNR, where R = H in (I) and R = Me in (II), almost orthogonal to the adjacent heterocyclic ring. The molecules of (I) are linked into cyclic centrosymmetric dimers by pairs of N—H...O hydrogen bonds, while those of (II) are linked into complex sheets by a combination of one three‐centre N—H...(O)2 hydrogen bond, one two‐centre C—H...O hydrogen bond and two C—H...π(arene) hydrogen bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号