首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Benzothiazole derivatives are a class of privileged molecules due to their biological activity and pharmaceutical applications. One route to these molecules is via intramolecular cyclization of thioureas to form substituted 2‐aminobenzothiazoles, but this often requires harsh conditions or employs expensive metal catalysts. Herein, the copper(II)‐ and gold(III)‐mediated cyclizations of thioureas to substituted 2‐aminobenzothiazoles are reported. The single‐crystal X‐ray structures of the thiourea N‐(3‐methoxyphenyl)‐N ′‐(pyridin‐2‐yl)thiourea, C13H13N3OS, and the intermediate metal complexes aquabis[5‐methoxy‐N‐(pyridin‐2‐yl‐κN )‐1,3‐benzothiazol‐2‐amine‐κN 3]copper(II) dinitrate, [Cu(C13H11N3OS)2(H2O)](NO3)2, and bis{2‐[(5‐methoxy‐1,3‐benzothiazol‐2‐yl)amino]pyridin‐1‐ium} dichloridogold(I) chloride monohydrate, (C13H12N3OS)2[AuCl2]Cl·H2O, are reported. The copper complex exhibits a distorted trigonal–bipyramidal geometry, with direct metal‐to‐benzothiazole‐ligand coordination, while the gold complex is a salt containing the protonated uncoordinated benzothiazole, and offers evidence that metal reduction (in this case, AuIII to AuI) is required for the cyclization to proceed. As such, this study provides further mechanistic insight into the role of the metal cations in these transformations.  相似文献   

2.
A one‐dimensional AgI coordination complex, catena‐poly[[silver(I)‐μ‐{2‐[2‐(pyridin‐4‐yl)‐1H‐benzimidazol‐1‐ylmethyl]phenol‐κ2N2:N3}] perchlorate monohydrate], {[Ag(C19H15N3O)]ClO4·H2O}n, was synthesized by the reaction of 2‐[2‐(pyridin‐4‐yl)‐1H‐benzimidazol‐1‐ylmethyl]phenol (L) with silver perchlorate. In the complex, the L ligands are arranged alternately and link AgI cations through one benzimidazole N atom and the N atom of the pyridine ring, leading to an extended zigzag chain structure. In addition, the one‐dimensional chains are extended into a three‐dimensional supramolecular architecture via O—H...O hydrogen‐bond interactions and π–π stacking interactions. The complex exhibits photoluminescence in acetonitrile solution, with an emission maximum at 390 nm, and investigation of the thermal stability reveals that the network structure is stable up to 650 K.  相似文献   

3.
The new asymmetrical organic ligand 2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole ( L , C17H13N5O), containing pyridine and imidazole terminal groups, as well as potential oxdiazole coordination sites, was designed and synthesized. The coordination chemistry of L with soft AgI, CuI and CdII metal ions was investigated and three new coordination polymers (CPs), namely, catena‐poly[[silver(I)‐μ‐2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole] hexafluoridophosphate], {[Ag( L )]PF6}n, catena‐poly[[copper(I)‐di‐μ‐iodido‐copper(I)‐bis(μ‐2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole)] 1,4‐dioxane monosolvate], {[Cu2I2( L )2]·C4H8O2}n, and catena‐poly[[[dinitratocopper(II)]‐bis(μ‐2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole)]–methanol–water (1/1/0.65)], {[Cd( L )2(NO3)2]·2CH4O·0.65H2O}n, were obtained. The experimental results show that ligand L coordinates easily with linear AgI, tetrahedral CuI and octahedral CdII metal atoms to form one‐dimensional polymeric structures. The intermediate oxadiazole ring does not participate in the coordination interactions with the metal ions. In all three CPs, weak π–π interactions between the nearly coplanar pyridine, oxadiazole and benzene rings play an important role in the packing of the polymeric chains.  相似文献   

4.
A new asymmetric ligand, 5‐{3‐[5‐(4‐methylphenyl)‐1,3,4‐oxadiazol‐2‐yl]phenyl}‐2‐(pyridin‐3‐yl)‐1,3,4‐oxadiazole ( L5 ), which contains two oxadiazole rings, was synthesized and characterized. The assembly of symmetric 2,5‐bis(pyridin‐3‐yl)‐1,3,4‐oxadiazole ( L1 ) and asymmetric L5 with AgCO2CF3 in solution yielded two novel AgI complexes, namely catena‐poly[[di‐μ‐trifluoroacetato‐disilver(I)]‐bis[μ‐2,5‐bis(pyridin‐3‐yl)‐1,3,4‐oxadiazole]], [Ag2(C2F3O2)2(C12H8N4O)2]n or [Ag22‐O2CCF3)2( L1 )2]n ( 1 ), and bis(μ3‐5‐{3‐[5‐(4‐methylphenyl)‐1,3,4‐oxadiazol‐2‐yl]phenyl}‐2‐(pyridin‐3‐yl)‐1,3,4‐oxadiazole)tetra‐μ3‐trifluoroacetato‐tetrasilver(I) dichloromethane monosolvate, [Ag4(C2F3O2)4(C22H15N5O2)2]·CH2Cl2 or [Ag23‐O2CCF3)2( L5 )]2·CH2Cl2 ( 2 ). Complex 1 displays a one‐dimensional ring–chain motif, where dinuclear Ag2(CF3CO2)2 units alternate with Ag2( L1 )2 macrocycles. This structure is different from previously reported Ag– L1 complexes with different anions. Complex 2 features a tetranuclear supramolecular macrocycle, in which each ligand adopts a tridentate coordination mode with the oxadiazole ring next to the p‐tolyl ring coordinated and that next to the pyridyl ring free. Two L5 ligands are bound to two Ag1 centres through two oxadiazole N and two pyridyl N atoms to form a macrocycle. The other two oxadiazole N atoms coordinate to the two Ag2 centres of the Ag2(O2CCF3)4 dimer. Each CF3CO2? anion adopts a μ3‐coordination mode, bridging the Ag1 and Ag2 centres to form a tetranuclear silver(I) complex. This study indicates that the donor ability of the bridging oxadiazole rings can be tuned by electron‐withdrawing and ‐donating substituents. The emission properties of ligands L1 and L5 and complexes 1 and 2 were also investigated in the solid state.  相似文献   

5.
The title compound, poly[[μ4‐5‐carboxy‐4‐carboxylato‐2‐(pyridin‐4‐yl)‐1H‐imidazol‐1‐ido]disilver(I)], [Ag2(C10H5N3O4)]n, was synthesized by reacting silver nitrate with 2‐(pyridin‐4‐yl)‐1H‐imidazole‐4,5‐dicarboxylic acid (H3PyIDC) under hydrothermal conditions. The asymmetric unit contains two crystallographically independent AgI cations and one unique HPyIDC2− anion. Both AgI cations are three‐coordinated in distorted T‐shaped coordination geometries. One AgI cation is coordinated by one N and two O atoms from two HPyIDC2− anions, while the other is bonded to one O and two N atoms from two HPyIDC2− anions. It is interesting to note that the HPyIDC2− group acts as a μ4‐bridging ligand to link the AgI cations into a three‐dimensional framework, which can be simplified as a diamondoid topology. The thermal stability and photoluminescent properties of the title compound have also been studied.  相似文献   

6.
[μ‐N,N′‐Bis(pyridin‐3‐yl)benzene‐1,4‐dicarboxamide‐<!?show [forcelb]><!?tlsb=0.12pt>1:2κ2N:N′]bis{[N,N′‐bis(pyridin‐3‐yl)benzene‐1,4‐dicarboxamide‐κN]diiodidomercury(II)}, [Hg2I4(C18H14N4O2)3], is an S‐shaped dinuclear molecule, composed of two HgI2 units and three N,N′‐bis(pyridin‐3‐yl)benzene‐1,4‐dicarboxamide (L) ligands. The central L ligand is centrosymmetric and coordinated to two HgII cations via two pyridine N atoms, in a synsyn conformation. The two terminal L ligands are monodentate, with one uncoordinated pyridine N atom, and each adopts a synanti conformation. The HgI2 units show highly distorted tetrahedral (sawhorse) geometry, as the HgII centres lie only 0.34 (2) or 0.32 (2) Å from the planes defined by the I and pyridine N atoms. Supramolecular interactions, thermal stability and solid‐state luminescence properties were also measured.  相似文献   

7.
The title compounds, bis{μ‐N‐[(diphenylphosphanyl)methyl]pyridin‐4‐amine‐κ2N1:P}disilver bis(perchlorate) acetonitrile monosolvate, [Ag2(C18H17N2P)2](ClO4)2·CH3CN, (1), and bis{μ‐N‐[(diphenylphosphanyl)methyl]pyridin‐4‐amine‐κ2N1:P}bis[(nitrato‐κ2O,O)silver], [Ag2(C18H17N2P)2(NO3)2], (2), each contain disilver macrocyclic [Ag2(C18H17N2P)2]2+ cations lying about inversion centres. The cations are constructed by two N‐[(diphenylphosphanyl)methyl]pyridin‐4‐amine (DPP) ligands linking two Ag+ cations in a head‐to‐tail fashion. In (1), the unique Ag+ cation has a near‐linear coordination geometry consisting of one pyridine N atom and one P atom from two different DPP ligands. Two ClO4 anions doubly bridge two metallomacrocycles through Ag...O and N—H...O weak interactions to form a chain extending in the c direction. The half‐occupancy acetonitrile molecule lies with its methyl C atom on a twofold axis and makes a weak N...Ag contact. In (2), there are two independent [Ag(C18H17N2P)]+ cations. The nitrate anions weakly chelate to each Ag+ cation, leading to each Ag+ cation having a distorted tetrahedral coordination geometry consisting of one pyridine N atom and one P atom from two different DPP ligands, and two chelating nitrate O atoms. Each dinuclear [Ag2(C18H17N2P)2(NO3)2] molecule acts as a four‐node to bridge four adjacent equivalent molecules through N—H...O interactions, forming a two‐dimensional sheet parallel to the bc plane. Each sheet contains dinuclear molecules involving just Ag1 or Ag2 and these two types of sheet are stacked in an alternating fashion. The sheets containing Ag1 all lie near x = , , etc, while those containing Ag2 all lie near x = 0, 1, 2 etc. Thus, the two independent sheets are arranged in an alternating sequence at x = 0, , 1, etc. These two different supramolecular structures result from the different geometric conformations of the templating anions which direct the self‐assembly of the cations and anions.  相似文献   

8.
Two dinuclear mercury(II) iodide compounds, [Hg2(L)(I)4] ( 1 ) and [(L′)Hg(μ‐I)2HgI2]n ( 2 ) [L = N,N′‐bis(phenyl(pyridin‐2‐yl)methylene)propane‐1,2‐diamine and L′ = N‐(phenyl(pyridin‐2‐yl)methylene)propane‐1,2‐diamine] were synthesized and characterized. The molecular structures of [Hg2(L)(I)4] ( 1 ) and [(L′)Hg(μ‐I)2HgI2]n ( 2 ), which were determined by single‐crystal X‐ray diffraction, indicate that each HgII in 1 has a distorted tetrahedral environment around the metal atom with a HgN2I2 chromophore, whereas in 2 one mercury(II) atom adopts a distorted tetrahedral arrangement with a HgI4 chromophore and the other has a distorted square pyramidal environment with HgN3I2 chromophore. In the solid state, compound 2 consists of a 1D coordination polymer structure.  相似文献   

9.
With the new semi‐rigid V‐shaped bidentate pyridyl amide compound 5‐methyl‐N,N′‐bis(pyridin‐4‐yl)benzene‐1,3‐dicarboxamide (L) as an auxiliary ligand and the FeII ion as the metal centre, one mononuclear complex, bis(methanol‐κO)bis[5‐methyl‐N,N′‐bis(pyridin‐4‐yl)benzene‐1,3‐dicarboxamide‐κN]bis(thiocyanato‐κN)iron(II), [Fe(SCN)2(C19H16N4O2)2(CH3OH)2] ( 1 ), and one two‐dimensional coordination polymer, catena‐poly[[[bis(thiocyanato‐κN)iron(II)]‐bis[μ‐5‐methyl‐N,N′‐bis(pyridin‐4‐yl)benzene‐1,3‐dicarboxamide‐κ2N:N′]] methanol disolvate dihydrate], {[Fe(SCN)2(C19H16N4O2)2]·2CH3OH·2H2O}n ( 2 ), were prepared by slow evaporation and H‐tube diffusion methods, respectively, indicating the effect of the method of crystallization on the structure type of the target product. Both complexes have been structurally characterized by elemental analysis, IR spectroscopy and single‐crystal X‐ray crystallography. The single‐crystal X‐ray diffraction analysis shows that L functions as a monodentate ligand in mononuclear 1 , while it coordinates in a bidentate manner to two independent Fe(SCN)2 units in complex 2 , with a different conformation from that in 1 and the ligands point in two almost orthogonal directions, therefore leading to a two‐dimensional grid‐like network. Investigation of the magnetic properties reveals the always high‐spin state of the FeII centre over the whole temperature range in 1 and a gradual thermally‐induced incomplete spin crossover (SCO) behaviour below 150 K in 2 , demonstrating the influence of the different coordination fields on the spin properties of the metal ions. The current results provide useful information for the rational design of functional complexes with different structure dimensionalities by employing different conformations of the ligand and different crystallization methods.  相似文献   

10.
The structures of five compounds consisting of (prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine complexed with copper in both the CuI and CuII oxidation states are presented, namely chlorido{(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(I) 0.18‐hydrate, [CuCl(C15H17N3)]·0.18H2O, (1), catena‐poly[[copper(I)‐μ2‐(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ5N,N′,N′′:C2,C3] perchlorate acetonitrile monosolvate], {[Cu(C15H17N3)]ClO4·CH3CN}n, (2), dichlorido{(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(II) dichloromethane monosolvate, [CuCl2(C15H17N3)]·CH2Cl2, (3), chlorido{(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(II) perchlorate, [CuCl(C15H17N3)]ClO4, (4), and di‐μ‐chlorido‐bis({(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(II)) bis(tetraphenylborate), [Cu2Cl2(C15H17N3)2][(C6H5)4B]2, (5). Systematic variation of the anion from a coordinating chloride to a noncoordinating perchlorate for two CuI complexes results in either a discrete molecular species, as in (1), or a one‐dimensional chain structure, as in (2). In complex (1), there are two crystallographically independent molecules in the asymmetric unit. Complex (2) consists of the CuI atom coordinated by the amine and pyridyl N atoms of one ligand and by the vinyl moiety of another unit related by the crystallographic screw axis, yielding a one‐dimensional chain parallel to the crystallographic b axis. Three complexes with CuII show that varying the anion composition from two chlorides, to a chloride and a perchlorate to a chloride and a tetraphenylborate results in discrete molecular species, as in (3) and (4), or a bridged bis‐μ‐chlorido complex, as in (5). Complex (3) shows two strongly bound Cl atoms, while complex (4) has one strongly bound Cl atom and a weaker coordination by one perchlorate O atom. The large noncoordinating tetraphenylborate anion in complex (5) results in the core‐bridged Cu2Cl2 moiety.  相似文献   

11.
The complexes [Au3(dcmp)2][X]3 {dcmp=bis(dicyclohexylphosphinomethyl)cyclohexylphosphine; X=Cl? ( 1 ), ClO4? ( 2 ), OTf? ( 3 ), PF6? ( 4 ), SCN?( 5 )}, [Ag3(dcmp)2][ClO4]3 ( 6 ), and [Ag3(dcmp)2Cl2][ClO4] ( 7 ) were prepared and their structures were determined by X‐ray crystallography. Complexes 2 – 4 display a high‐energy emission band with λmax at 442–452 nm, whereas 1 and 5 display a low‐energy emission with λmax at 558–634 nm in both solid state and in dichloromethane at 298 K. The former is assigned to the 3[5dσ*6pσ] excited state of [Au3(dcmp)2]3+, whereas the latter is attributed to an exciplex formed between the 3[5dσ*6pσ] excited state of [Au3(dcmp)2]3+ and the counterions. In solid state, complex [Ag3(dcmp)2][ClO4]3 ( 6 ) displays an intense emission band at 375 nm with a Stokes shift of ≈7200 cm?1 from the 1[4dσ*→5pσ] absorption band at 295 nm. The 375 nm emission band is assigned to the emission directly from the 3[4dσ*5pσ] excited state of 6 . Density functional theory (DFT) calculations revealed that the absorption and emission energies are inversely proportional to the number of metal ions (n) in polynuclear AuI and AgI linear chain complexes without close metal???anion contacts. The emission energies are extrapolated to be 715 and 446 nm for the infinite linear AuI and AgI chains, respectively, at metal???metal distances of about 2.93–3.02 Å. A QM/MM calculation on the model [Au3(dcmp)2Cl2]+ system, with Au???Cl contacts of 2.90–3.10 Å, gave optimized Au???Au distances of 2.99–3.11 Å in its lowest triplet excited state and the emission energies were calculated to be at approximately 600–690 nm, which are assigned to a three‐coordinate AuI site with its spectroscopic properties affected by AuI???AuI interactions.  相似文献   

12.
Six new gold(III) complexes [Au(bzpam)Cl2] (1, bzpamH = N‐benzyl picolinamide), [Au(hetpam)Cl2] (2, hetpamH = N‐(2‐hydroxyethyl) picolinamide), [Au(pypam)Cl]AuCl4 (3, pypamH = N‐(pyridin‐2‐ylmethyl) picolinamide), [Au(dmepam)Cl]AuCl4 (4, dmepamH = N‐(2‐(dimethylamino)ethyl) picolinamide), [Au(bhetpydam)Cl] (5, bhetpydamH2 = N,N′‐bis(2‐hydroxyethyl) pyridine‐ 2,6‐dicarboxamide) and [Au2(hedam)Cl4] (6, hedamH2 = N,N′‐(hexane‐1,6‐diyl) dipicolinamide) with deprotonated pyridyl carboxamide were synthesized and characterized by elemental analysis, molar conductivity, IR, H1 NMR and C13 NMR techniques. The analytical data showed that deprotonated pyridyl carboxamide coordinated with gold(III) ions through a nitrogen atom. The cytotoxicity against Bel‐7402 and HL‐60 cell lines was tested by MTT (3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide) and SRB (sulforhodamine B) assays. The results indicated that the complexes exerted cytotoxic effects against Bel‐7402 and HL‐60 cell lines, complex 6 had better cytotoxicity than cisplatin, and complex 3 displayed similar cytotoxicity to cisplatin against Bel‐7402 cell line. The results suggested that the characteristics of ligands had an important effect on cytotoxicity of complexes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Three imidazole hydrazone compounds, namely 2‐(4‐nitro‐1H‐imidazol‐1‐yl)‐N′‐[1‐(pyridin‐2‐yl)ethylidene]acetohydrazide, C12H12N6O3, ( 1 ), 2‐(2‐nitro‐1H‐imidazol‐1‐yl)‐N′‐[1‐(pyridin‐2‐yl)ethylidene]acetohydrazide, C12H12N6O3, ( 2 ), and 2‐(2‐nitro‐1H‐imidazol‐1‐yl)‐N′‐[(phenyl)(pyridin‐2‐yl)methylidene]acetohydrazide, C17H14N6O3, ( 3 ), were obtained and fully characterized, including their crystal structure determinations. While all the compounds proved not to be cytotoxic to J774.A1 macrophage cells, ( 1 ) and ( 3 ) exhibited activity against Leishmania chagasi, whereas ( 2 ) was revealed to be inactive. Since both ( 1 ) and ( 3 ) exhibited antileishmanial effects, while ( 2 ) was devoid of activity, the presence of the acetyl or benzoyl groups was possibly not a determining factor in the observed antiprotozoal activity. In contrast, since ( 1 ) and ( 3 ) are 4‐nitroimidazole derivatives and ( 2 ) is a 2‐nitroimidazole‐derived compound, the presence of the 4‐nitro group probably favours antileishmanial activity over the 2‐nitro group. The results suggested that further investigations on compounds ( 1 ) and ( 3 ) as bioreducible antileishmanial prodrug candidates are called for.  相似文献   

14.
A new series of 2‐(p‐tolyloxy)‐3‐(5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazol‐2‐yl)quinoline were synthesized from oxidative cyclization of N′‐((2‐(p‐tolyloxy)quinoline‐3‐yl)methylene)isonicotinohydrazide in DMSO/I2 at reflux condition for 3–4 h. The structures of the new compounds were confirmed by elemental analyses as well as IR, 1H‐NMR, and mass spectral data. All the synthesized compounds were screened for their antibacterial activities against various bacterial strains. Several of these compounds showed potential antibacterial activity. J. Heterocyclic Chem., (2011).  相似文献   

15.
Supramolecular isomerism for coordination networks refers to the existence of different architectures having the same building blocks and identical stoichiometries. For a given building block, different arrangements can lead to the formation of a series of supramolecular isomers. Two one‐dimensional CoII coordination polymers based on N,N′‐bis(pyridin‐3‐yl)oxalamide (BPO), both catena‐poly[[[dichloridocobalt(II)]‐bis[μ‐N,N′‐bis(pyridin‐3‐yl)oxalamide‐κ2N:N′]] dimethylformamide disolvate], {[CoCl2(C12H10N4O2)2]·2C3H7NO}n, have been assembled by the solvothermal method. Single‐crystal X‐ray diffraction analyses reveal that the two compounds are supramolecular isomers, the isomerism being induced by the orientation of the dimethylformamide (DMF) molecules in the crystal lattice.  相似文献   

16.
In the title three‐dimensional tetrazolate‐based coordination polymer, poly[bis(μ3‐cyanido‐κ3N:C:C)[μ5‐5‐(pyridin‐4‐yl)tetrazolato‐κ5N:N′:N′′:N′′′:N′′′′]tricopper(I)], [Cu3(C6H4N5)(CN)2]n, there are two types of coordinated CuI atoms. One type exhibits a tetrahedral environment and the other, residing on a twofold axis, adopts a trigonal coordination environment. The closest Cu...Cu distance is only 2.531 (2) Å, involving a bridging cyanide C atom. All four tetrazolate and the pyridine N atom of the 4‐(pyridin‐4‐yl)‐1H‐tetrazolate anion are coordinated to these CuI atoms and exhibit a μ5‐bridging mode. The three‐dimensional coordination network can be topologically simplified as a rarely observed (3,3,4,5)‐connected network with the Schläfli symbol (4.6.84)2.(42.6.87).(6.82)3.  相似文献   

17.
Luminescent metal complexes are used in photooptical devices. Zinc(II) complexes are of interest because of the ability to tune their color, their high thermal stability and their favorable carrier transport character. In particular, some zinc(II) complexes with aryl diimine and/or heterocyclic ligands have been shown to emit brightly in the blue region of the spectrum. Zinc(II) complexes bearing derivatized imidazoles have been explored for possible optoelectronic applications. The structures of two zinc(II) complexes of 5,6‐dimethyl‐2‐(pyridin‐2‐yl)‐1‐[(pyridin‐2‐yl)methyl]‐1H‐benzimidazole (L), namely dichlorido(dimethylformamide‐κO){5,6‐dimethyl‐2‐(pyridin‐2‐yl‐κN)‐1‐[(pyridin‐2‐yl)methyl]‐1H‐benzimidazole‐κN3}zinc(II) dimethylformamide monosolvate, [ZnCl2(C20H18N4)(C3H7NO)]·C3H7NO, (I), and bis(acetato‐κ2O,O′){5,6‐dimethyl‐2‐(pyridin‐2‐yl‐κN)‐1‐[(pyridin‐2‐yl)methyl]‐1H‐benzimidazole‐κN3}zinc(II) ethanol monosolvate, [Zn(C2H3O2)2(C20H18N4)]·C2H5OH, (II), are reported. Complex (I) crystallized as a dimethylformamide solvate and exhibits a distorted trigonal bipyramidal coordination geometry. The coordination sphere consists of a bidentate L ligand spanning axial to equatorial sites, two chloride ligands in equatorial sites, and an O‐bound dimethylformamide ligand in the remaining axial site. The other complex, (II), crystallized as an ethanol solvate. The ZnII atom has a distorted trigonal prismatic coordination geometry, with two bidentate acetate ligands occupying two edges and a bidentate L ligand occupying the third edge of the prism. Complexes (I) and (II) emit in the blue region of the spectrum. The results of density functional theory (DFT) calculations suggest that the luminescence of L results from π*←π transitions and that the luminescence of the complexes results from interligand charge‐transfer transitions. The orientation of the 2‐(pyridin‐2‐yl) substituent with respect to the benzimidazole system was found to have an impact on the calculated HOMO–LUMO gap (HOMO is highest occupied molecular orbital and LUMO is lowest unoccupied molecular orbital).  相似文献   

18.
Iron(III) complexes [Fe( L )( L′ )(NO3)]—in which L is phenyl‐N,N‐bis[(pyridin‐2‐yl)methyl]methanamine ( 1 ), (anthracen‐9‐yl)‐N,N‐bis[(pyridin‐2‐yl)methyl]methanamine ( 2 ), (pyreny‐1‐yl)‐N,N‐bis[(pyridin‐2‐yl)methyl]methanamine ( 3 – 5 ), and L′ is catecholate ( 1 – 3 ), 4‐tert‐butyl catecholate ( 4 ), and 4‐(2‐aminoethyl)‐benzene‐1,2‐diolate ( 5 )—were synthesized and their photocytotoxic properties examined. The five electron‐paramagnetic complexes displayed a FeIII/FeII redox couple near ?0.4 V versus a saturated calomel electrode (SCE) in DMF/0.1 m tetrabutylammonium perchlorate (TBAP). They showed unprecedented photocytotoxicity in red light (600–720 nm) to give IC50≈15 μM in various cell lines by means of apoptosis to generate reactive oxygen species. They were ingested in the nucleus of HeLa and HaCaT cells in 4 h, thereby interacting favorably with calf thymus (ct)‐DNA and photocleaving pUC19 DNA in red light of 785 nm to form hydroxyl radicals.  相似文献   

19.
Two new ZnII coordination polymers, namely, catena‐poly[[dibromidozinc(II)]‐μ‐[3,6‐bis(pyridin‐4‐yl)phenanthrene‐9,10‐dione‐κ2N:N′]], [ZnBr2(C24H14N2O2)]n, (1), and poly[[bromido[μ3‐10‐hydroxy‐3,6‐bis(pyridin‐4‐yl)phenanthren‐9‐olato‐κ3N:N′:O9]zinc(II)] hemihydrate], {[ZnBr(C24H15N2O2)]·0.5H2O}n, (2), have been synthesized through hydrothermal reaction of ZnBr2 and a 60° angular phenanthrenedione‐based linker, i.e. 3,6‐bis(pyridin‐4‐yl)phenanthrene‐9,10‐dione, in different solvent systems. Single‐crystal analysis reveals that polymer (1) features one‐dimensional zigzag chains connected by weak C—H...π and π–π interactions to form a two‐dimensional network. The two‐dimensional networks are further stacked in an ABAB fashion along the a axis through C—H...O hydrogen bonds. Layers A and B comprise left‐ and right‐handed helical chains, respectively. Coordination polymer (2) displays a wave‐like two‐dimensional layered structure with helical chains. In this compound, there are two opposite helical –Zn–HL– chains [HL is 10‐hydroxy‐3,6‐bis(pyridin‐4‐yl)phenanthren‐9‐olate] in adjacent layers. The layers are packed in an ABAB sequence and are further connected through O—H...Br and O—H...O hydrogen‐bond interactions to form a three‐dimensional framework. In (1) and (2), the mutidentate L and HL ligands exhibits different coordination modes.  相似文献   

20.
A novel class of 5‐amino‐N′‐(1‐(pyridin‐4‐yl)ethylidene)‐1H‐pyrazole‐4‐carbohydrazides and 8‐(pyridin‐4‐yl)pyrido[2,3‐d][1,2,4]triazolo[4,3‐a]pyrimidin‐5(1H)‐ones was synthesized from reaction of 2‐cyano‐N′‐(1‐(pyridin‐4‐yl)ethylidene)‐acetohydrazide and 7‐(pyridin‐4‐yl)‐2‐thioxo‐2,3‐dihydropyrido[2,3‐d]pyrimidin‐4(1H)‐one with the appropriate hydrazonoyl halides. Moreover, 2‐cyano‐N′‐(1‐(pyridin‐4‐yl)‐ethylidene)‐acetohydrazide was used for the synthesis of 2‐cyano‐N′‐(1‐(pyridin‐4‐yl)ethylidene)‐acrylohydrazides and 2‐oxo‐2‐(2‐(1‐(pyridin‐4‐yl)ethylidene)‐hydrazinyl)‐acetohydrazonoyl cyanides. The structures of the newly prepared compounds were confirmed by both elemental and spectral analyses as well as by alternate synthesis. The anticancer activities of the prepared compounds were screened against the hepatocellular carcinoma (HepG2) cell line, and the results showed that most of the compounds exhibit considerable activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号