首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
A new polymorph of the cinnamic acid–isoniazid cocrystal has been prepared by slow evaporation, namely cinnamic acid–pyridine‐4‐carbohydrazide (1/1), C9H8O2·C6H7N3O. The crystal structure is characterized by a hydrogen‐bonded tetrameric arrangement of two molecules of isoniazid and two of cinnamic acid. Possible modification of the hydrogen bonding was investigated by changing the hydrazide group of isoniazid via an in situ reaction with acetone and cocrystallization with cinnamic acid. In the structure of cinnamic acid–N′‐(propan‐2‐ylidene)isonicotinohydrazide (1/1), C9H8O2·C9H11N3O, carboxylic acid–pyridine O—H...N and hydrazide–hydrazide N—H...O hydrogen bonds are formed.  相似文献   

2.
A further example of using a covalent‐bond‐forming reaction to alter supramolecular assembly by modification of hydrogen‐bonding possibilities is presented. This concept was introduced by Lemmerer, Bernstein & Kahlenberg [CrystEngComm (2011), 13 , 55–59]. The title structure, C9H11N3O·C7H6O4, which consists of a reacted niazid molecule, viz.N′‐(propan‐2‐ylidene)nicotinohydrazide, and 2,4‐dihydroxybenzoic acid, was solved from powder diffraction data using simulated annealing. The results further demonstrate the relevance and utility of powder diffraction as an analytical tool in the study of cocrystals and their hydrogen‐bond interactions.  相似文献   

3.
The crystal structures of three new solvates of olanzapine [systematic name: 2‐methyl‐4‐(4‐methylpiperazin‐1‐yl)‐10H‐thieno[2,3‐b][1,5]benzodiazepine], namely olanzapine acetic acid monosolvate, C17H20N4S·C2H4O2, (I), olanzapine propan‐2‐ol hemisolvate monohydrate, C17H20N4S·0.5C3H8O·H2O, (II), and olanzapine propan‐2‐one hemisolvate monohydrate, C17H20N4S·0.5C3H6O·H2O, (III), are presented and compared with other known olanzapine forms. There is a fairly close resemblance of the molecular conformation for all studied analogues. The crystal structures are built up through olanzapine dimers, which are characterized via C—H...π interactions between the aliphatic fragment (1‐methylpiperazin‐4‐yl) and the aromatic fragment (benzene system). All solvent (guest) molecules participate in hydrogen‐bonding networks. The crystal packing is sustained via intermolecular Nhost—H...Oguest, Oguest—H...Nhost, Oguest—H...Oguest and Chost—H...Oguest hydrogen bonds. It should be noted that the solvent propan‐2‐ol in (II) and propan‐2‐one in (III) show orientational disorder. The propan‐2‐ol molecule lies close to a twofold axis, while the propan‐2‐one molecule resides strictly on a twofold axis through the carbonyl C atom. In both cases, the water molecules present positional disorder of the H atoms.  相似文献   

4.
The compounds N′‐benzylidene‐N‐methylpyrazine‐2‐carbohydrazide, C13H12N4O, (IIa), N′‐(2‐methoxybenzylidene)‐N‐methylpyrazine‐2‐carbohydrazide, C14H14N4O2, (IIb), N′‐(4‐cyanobenzylidene)‐N‐methylpyrazine‐2‐carbohydrazide dihydrate, C14H11N5O·2H2O, (IIc), N‐methyl‐N′‐(2‐nitrobenzylidene)pyrazine‐2‐carbohydrazide, C13H11N5O3, (IId), and N‐methyl‐N′‐(4‐nitrobenzylidene)pyrazine‐2‐carbohydrazide, C13H11N5O3, (IIe), have dihedral angles between the pyrazine rings and the benzene rings in the range 55–78°. These methylated pyrazine‐2‐carbohydrazides have supramolecular structures which are formed by weak C—H...O/N hydrogen bonds, with the exception of (IIc) which is hydrated. There are π–π stacking interactions in all five compounds. Three of these structures are compared with their nonmethylated counterparts, which have dihedral angles between the pyrazine rings and the benzene rings in the range 0–6°.  相似文献   

5.
Red non‐solvate crystals of the title compound from ethanol, C23H19N3O4, orange solvate crystals from tert‐butanol, C23H19N3O4·C4H10O, yellow solvate crystals from dioxane–water, C23H19N3O4·0.5C4H8O2, and intense yellow solvate crystals from benzene–N,N′‐dimethylformamide, C23H19N3O4·C6H6, differ from each other in their molecular conformation and hydrogen‐bonding scheme. The bathochromic shifts of the crystal color are explained by the molecular planarity and charge‐transfer effect among the imidazole mol­ecules.  相似文献   

6.
p‐Phenylenebis(2‐oxo‐3‐phenyl‐1,2‐dihydropyrido[1,2‐a]pyrimidin‐5‐ium‐4‐olate), C34H22N4O4, is a bis‐mesoionic yellow pigment that shows fluorescence in the solid state. During a polymorph screening, single crystals of three solvates were grown and their crystal structures determined. Solvent‐free crystals were not obtained. A solvate with N‐methylpyrrolidone (NMP) and propan‐2‐ol, C34H22N4O4·2C5H9NO·C3H8O, (Ia), and an NMP trisolvate, C34H22N4O4·3C5H9NO, (Ib), crystallize with pigment molecules on inversion centres. The NMP/propan‐2‐ol mixed solvate (Ia) forms O—H...O hydrogen bonds between the different solvent molecules. In both structures, at least one of the solvent molecules is disordered. A third solvate structure, C34H22N4O4·0.5C5H9NO·C4H10O, (Ic), was obtained by crystallization from NMP and butan‐1‐ol. In this case, there are two symmetry‐independent pigment molecules, both situated on inversion centres. The solvent molecules are heavily disordered and their contribution to the scattering was suppressed. This solvate displays a channel structure, whereas the other two solvates form layer structures.  相似文献   

7.
The present paper reports the crystal structures of two short phosphonotripeptides (one in two crystal forms) containing one ΔPhe (dehydrophenylalanine) residue, namely dimethyl (3‐{[tert‐butoxycarbonylglycyl‐α,β‐(Z)‐dehydrophenylalanyl]amino}propyl)phosphonate, Boc0–Gly1–Δ(Z)Phe2–α‐Abu3PO3Me2, C21H32N3O7P, (I), and diethyl (4‐{[tert‐butoxycarbonylglycyl‐α,β‐(Z)‐dehydrophenylalanyl]amino}butyl)phosphonate, Boc0–Gly1–Δ(Z)Phe2–α‐Nva3PO3Et2, as the propan‐2‐ol monosolvate 0.122‐hydrate, C24H38N3O7P·C3H8O·0.122H2O, (II), and the ethanol monosolvate 0.076‐hydrate, C24H38N3O7P·C2H6O·0.076H2O, (III). The crystals of (II) and (III) are isomorphous but differ in the type of solvent. The phosphono group is linked directly to the last Cα atom in the main chain for all three peptides. All the amino acids are trans linked in the main chains. The crystal structures exhibit no intramolecular hydrogen bonds and are stabilized by intermolecular hydrogen bonds only.  相似文献   

8.
The synthesis and molecular structure of the novel phosphonic acid 4‐tert‐Bu‐2,6‐Mes2‐C6H2P(O)(OH)2 ( 1 ) is reported. Compound 1 crystallizes in form of its monohydrate as a hydrogen‐bonded cluster ( 1·H2O )4 comprizing four phosphonic acid molecules (O···O 2.383(3)‐3.006(4) Å). Additionally, sterically hindered terphenyl‐substituted phosphorus compounds of the type 4‐tert‐Bu‐2,6‐Mes2‐C6H2PR(O)(OH) ( 5 , R = H; 7 , R = O2CC6H4‐3‐Cl; 9 , R = OEt) were prepared, which all show dimeric hydrogen‐bonded structures with O···O distances in the range 2.489(2)–2.519(3) Å. Attempts at oxidizing 5 using H2O2, KMnO4, O3, or Me3NO in order to give 1 failed. Crystallization of 5 in the presence of Me3NO gave the novel hydrogen bonded aggregate 4‐tert‐Bu‐2,6‐Mes2‐C6H2PH(O)(OH)·ONMe3 ( 6 ) showing an O–H···O distance of 2.560(4) Å.  相似文献   

9.
Cocrystallization of 2,2′‐dithiodibenzoic acid with isonicotinohydrazide from methanol solution yields the 1:2 cocrystal 2,2′‐dithiodibenzoic acid–isonicotinohydrazide (1/2), C14H10O4S2·2C6H7N3O. The component molecules are linked by intermolecular O—H...N, N—H...O, N—H...N and C—H...O hydrogen bonds into layers running parallel to the (010) plane, and these layers are further linked into a three‐dimensional framework structure by means of weak aromatic π–π stacking interactions. As a potential cocrystallization agent, isonicotinohydrazide may be used for effective and versatile synthetic supramolecular strategies utilizing hydrogen bonding of specific molecular building blocks.  相似文献   

10.
The derivatives of pyrimidin‐4‐one can adopt either a 1H‐ or a 3H‐tautomeric form, which affects the hydrogen‐bonding interactions in cocrystals with compounds containing complementary functional groups. In order to study their tautomeric preferences, we crystallized 2,6‐diaminopyrimidin‐4‐one and 2‐amino‐6‐methylpyrimidin‐4‐one. During various crystallization attempts, four structures of 2,6‐diaminopyrimidin‐4‐one were obtained, namely solvent‐free 2,6‐diaminopyrimidin‐4‐one, C4H6N4O, (I), 2,6‐diaminopyrimidin‐4‐one–dimethylformamide–water (3/4/1), C4H6N4O·1.33C3H7NO·0.33H2O, (Ia), 2,6‐diaminopyrimidin‐4‐one dimethylacetamide monosolvate, C4H6N4O·C4H9NO, (Ib), and 2,6‐diaminopyrimidin‐4‐one–N‐methylpyrrolidin‐2‐one (3/2), C4H6N4O·1.5C5H9NO, (Ic). The 2,6‐diaminopyrimidin‐4‐one molecules exist only as 3H‐tautomers. They form ribbons characterized by R22(8) hydrogen‐bonding interactions, which are further connected to form three‐dimensional networks. An intermolecular N—H...N interaction between amine groups is observed only in (I). This might be the reason for the pyramidalization of the amine group. Crystallization experiments on 2‐amino‐6‐methylpyrimidin‐4‐one yielded two isostructural pseudopolymorphs, namely 2‐amino‐6‐methylpyrimidin‐4(3H)‐one–2‐amino‐6‐methylpyrimidin‐4(1H)‐one–dimethylacetamide (1/1/1), C5H7N3O·C5H7N3O·C4H9NO, (IIa), and 2‐amino‐6‐methylpyrimidin‐4(3H)‐one–2‐amino‐6‐methylpyrimidin‐4(1H)‐one–N‐methylpyrrolidin‐2‐one (1/1/1), C5H7N3O·C5H7N3O·C5H9NO, (IIb). In both structures, a 1:1 mixture of 1H‐ and 3H‐tautomers is present, which are linked by three hydrogen bonds similar to a Watson–Crick C–G base pair.  相似文献   

11.
The X‐ray crystal structures of solvates of sulfapyridine have been determined to be conformational polymorphs. 4‐Amino‐N‐(1,2‐dihydropyridin‐2‐ylidene)benzenesulfonamide (polymorph III), C11H11N3O2S, (1), 4‐amino‐N‐(1,2‐dihydropyridin‐2‐ylidene)benzenesulfonamide 1,3‐dioxane monosolvate, C11H11N3O2S·C4H8O2, (2), and 4‐amino‐N‐(1,2‐dihydropyridin‐2‐ylidene)benzenesulfonamide tetrahydrofuran monosolvate, C11H11N3O2S·C4H8O, (3), crystallized as the imide form, while piperidin‐1‐ium 4‐amino‐N‐(pyridin‐2‐yl)benzenesulfonamidate, C5H12N+·C11H10N3O2S, (4), crystallized as the piperidinium salt. The tetrahydrofuran and dioxane solvent molecules in their respective structures were disordered and were refined using a disorder model. Three‐dimensional hydrogen‐bonding networks exist in all structures between at least one sulfone O atom and the aniline N atom.  相似文献   

12.
The two title mononuclear compounds are four‐coordinate bis[N‐(5‐oxo‐4,4‐diphenyl‐4,5‐dihydro‐1H‐imidazolidin‐2‐ylidene)glycinato]copper(II) dimethylformamide disolvate, [Cu(C17H14N3O3)2]·2C3H7NO, (I), and five‐coordinate aquabis[N‐(5‐oxo‐4,4‐diphenyl‐4,5‐dihydro‐1H‐imidazolidin‐2‐ylidene)glycinato]copper(II) dimethylformamide disolvate, [Cu(C17H14N3O3)2(H2O)]·2C3H7NO, (II). In (I), the CuII ion lies on an inversion centre with one‐half of the complex molecule in the asymmetric unit, while in (II) there are two independent ligand molecules in the asymmetric unit, with the CuII ion and coordinated water molecule located on a general position. In both crystal structures, the complex molecules assemble in ribbons via N—H...O hydrogen‐bond networks.  相似文献   

13.
The search for new tuberculostatics is important considering the occurrence of drug‐resistant strains of Mycobacterium tuberculosis . Three polymorphs of N ′‐(1,3‐dithiolan‐2‐ylidene)‐4‐nitrobenzohydrazide (a potentially tuberculostatic agent), C10H9N3O3S2, denoted (I1), (I2) and (I3), and the monohydrate of this compound, C10H9N3O3S2·H2O, (I4), have been characterized by single‐crystal X‐ray diffraction. The conformations of the molecules in all these structures are very similar. Structures (I1), (I2) and (I3) provide an example of packing polymorphism resulting from different intermolecular interactions.  相似文献   

14.
4,4′‐Bipyridyl N,N′‐dioxide crystallizes with 3‐hydr­oxy‐2‐naphthoic acid to give a centrosymmetric three‐component adduct, C10H8N2O2·2C11H8O3, which is engineered into a two‐dimensional layer structure by two kinds of π–π inter­actions. Weak C—H⋯O inter­actions further link the two‐dimensional structure into a three‐dimensional structure.  相似文献   

15.
Doubly and triply hydrogen‐bonded supramolecular synthons are of particular interest for the rational design of crystal and cocrystal structures in crystal engineering since they show a high robustness due to their high stability and good reliability. The compound 5‐methyl‐2‐thiouracil (2‐thiothymine) contains an ADA hydrogen‐bonding site (A = acceptor and D = donor) if the S atom is considered as an acceptor. We report herein the results of cocrystallization experiments with the coformers 2,4‐diaminopyrimidine, 2,4‐diamino‐6‐phenyl‐1,3,5‐triazine, 6‐amino‐3H‐isocytosine and melamine, which contain complementary DAD hydrogen‐bonding sites and, therefore, should be capable of forming a mixed ADADAD N—H…S/N—H…N/N—H…O synthon (denoted synthon 3sN·S;N·N;N·O), consisting of three different hydrogen bonds with 5‐methyl‐2‐thiouracil. The experiments yielded one cocrystal and five solvated cocrystals, namely 5‐methyl‐2‐thiouracil–2,4‐diaminopyrimidine (1/2), C5H6N2OS·2C4H6N4, (I), 5‐methyl‐2‐thiouracil–2,4‐diaminopyrimidine–N,N‐dimethylformamide (2/2/1), 2C5H6N2OS·2C4H6N4·C3H7NO, (II), 5‐methyl‐2‐thiouracil–2,4‐diamino‐6‐phenyl‐1,3,5‐triazine–N,N‐dimethylformamide (2/2/1), 2C5H6N2OS·2C9H9N5·C3H7NO, (III), 5‐methyl‐2‐thiouracil–6‐amino‐3H‐isocytosine–N,N‐dimethylformamide (2/2/1), (IV), 2C5H6N2OS·2C4H6N4O·C3H7NO, (IV), 5‐methyl‐2‐thiouracil–6‐amino‐3H‐isocytosine–N,N‐dimethylacetamide (2/2/1), 2C5H6N2OS·2C4H6N4O·C4H9NO, (V), and 5‐methyl‐2‐thiouracil–melamine (3/2), 3C5H6N2OS·2C3H6N6, (VI). Synthon 3sN·S;N·N;N·O was formed in three structures in which two‐dimensional hydrogen‐bonded networks are observed, while doubly hydrogen‐bonded interactions were formed instead in the remaining three cocrystals whereby three‐dimensional networks are preferred. As desired, the S atoms are involved in hydrogen‐bonding interactions in all six structures, thus illustrating the ability of sulfur to act as a hydrogen‐bond acceptor and, therefore, its value for application in crystal engineering.  相似文献   

16.
In the title complex, benzene‐1,3,5‐tricarboxylic acid–pyrazine N,N′‐dioxide (2/1), C9H6O6·0.5C4H4N2O2, cocrystallized trimesic acid (TMA) and pyrazine N,N′‐dioxide (PNO) molecules form strong O—H...O hydrogen bonds, but also important weak C—H...O and dipole–dipole intermolecular interactions, to generate a densely packed three‐dimensional network. PNO molecules lie on inversion centres where they connect pairs of TMA sheets into distinct two‐dimensional hydrogen‐bonded layers perpendicular to the crystallographic ab diagonal.  相似文献   

17.
In the hydrated adduct N,N′‐di­methyl­piperazine‐1,4‐diium bis(3‐carboxy‐2,3‐di­hydroxy­propanoate) dihydrate, [MeNH(CH2CH2)2NHMe]2+·2(C4H5O6)?·2H2O or C6H16N22+·2C4H5O6?·2H2O, formed between racemic tartaric acid and N,N′‐di­methyl­piperazine (triclinic P, Z′ = 0.5), the cations lie across centres of inversion. The anions alone form chains, and anions and water mol­ecules together form sheets; the sheets are linked by the cations to form a pillared‐layer framework. The supramolecular architecture thus takes the form of a family of N‐dimensional N‐component structures having N = 1, 2 or 3.  相似文献   

18.
In 2,2,2‐trichloro‐N,N′‐bis(4‐methoxyphenyl)ethane‐1,1‐diamine, C16H17Cl3N2O2, molecules are linked into helical chains by N—H...O hydrogen bonds. Molecules of 2,2,2‐trichloro‐N,N′‐bis(4‐chlorophenyl)ethane‐1,1‐diamine, C14H11Cl5N2, are connected into a three‐dimensional framework by two independent Cl...Cl interactions and one C—H...Cl hydrogen bond.  相似文献   

19.
The title salt, C18H46N2O2Si22+·2Cl, has been synthesized by reaction of N,N′‐bis(2‐hydroxyethyl)ethylenediamine with tert‐butyldimethylsilyl chloride. The zigzag backbone dication is located across an inversion centre and the two chloride anions are related by inversion symmetry. The ionic components form a supramolecular two‐dimensional network via N—H...Cl hydrogen bonding, which is responsible for the high melting point compared with the oily compound N,N′‐bis[2‐(tert‐butyldimethylsiloxy)ethyl]ethylenediamine.  相似文献   

20.
The title compounds are proton‐transfer compounds of cytosine with nicotinic acid [systematic name: 4‐amino‐2‐oxo‐2,3‐dihydropyrimidin‐1‐ium nicotinate monohydrate (cytosinium nicotinate hydrate), C4H6N3O+·C6H4NO2·H2O, (I)] and isonicotinic acid [systematic name: 4‐amino‐2‐oxo‐2,3‐dihydropyrimidin‐1‐ium isonicotinate–4‐aminopyrimidin‐2(1H)‐one–water (1/1/2) (cytosinium isonicotinate cytosine dihydrate), C4H6N3O+·C6H4NO2·C4H5N3O·2H2O, (II)]. In (I), the cation and anion are interlinked by N—H...O hydrogen bonding to form a one‐dimensional tape. These tapes are linked through water molecules to form discrete double sheets. In (II), the cytosinium–cytosine base pairs are connected by triple hydrogen bonds, leading to one‐dimensional polymeric ribbons. These ribbons are further interconnected via nicotinate–water and water–water hydrogen bonding, resulting in an overall three‐dimensional network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号