首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A path to new synthons for application in crystal engineering is the replacement of a strong hydrogen‐bond acceptor, like a C=O group, with a weaker acceptor, like a C=S group, in doubly or triply hydrogen‐bonded synthons. For instance, if the C=O group at the 2‐position of barbituric acid is changed into a C=S group, 2‐thiobarbituric acid is obtained. Each of the compounds comprises two ADA hydrogen‐bonding sites (D = donor and A = acceptor). We report the results of cocrystallization experiments of barbituric acid and 2‐thiobarbituric acid, respectively, with 2,4‐diaminopyrimidine, which contains a complementary DAD hydrogen‐bonding site and is therefore capable of forming an ADA/DAD synthon with barbituric acid and 2‐thiobarbituric acid. In addition, pure 2,4‐diaminopyrimidine was crystallized in order to study its preferred hydrogen‐bonding motifs. The experiments yielded one ansolvate of 2,4‐diaminopyrimidine (pyrimidine‐2,4‐diamine, DAPY), C4H6N4, (I), three solvates of DAPY, namely 2,4‐diaminopyrimidine–1,4‐dioxane (2/1), 2C4H6N4·C4H8O2, (II), 2,4‐diaminopyrimidine–N,N‐dimethylacetamide (1/1), C4H6N4·C4H9NO, (III), and 2,4‐diaminopyrimidine–1‐methylpyrrolidin‐2‐one (1/1), C4H6N4·C5H9NO, (IV), one salt of barbituric acid, viz. 2,4‐diaminopyrimidinium barbiturate (barbiturate is 2,4,6‐trioxopyrimidin‐5‐ide), C4H7N4+·C4H3N2O3, (V), and two solvated salts of 2‐thiobarbituric acid, viz. 2,4‐diaminopyrimidinium 2‐thiobarbiturate–N,N‐dimethylformamide (1/2) (2‐thiobarbiturate is 4,6‐dioxo‐2‐sulfanylidenepyrimidin‐5‐ide), C4H7N4+·C4H3N2O2S·2C3H7NO, (VI), and 2,4‐diaminopyrimidinium 2‐thiobarbiturate–N,N‐dimethylacetamide (1/2), C4H7N4+·C4H3N2O2S·2C4H9NO, (VII). The ADA/DAD synthon was succesfully formed in the salt of barbituric acid, i.e. (V), as well as in the salts of 2‐thiobarbituric acid, i.e. (VI) and (VII). In the crystal structures of 2,4‐diaminopyrimidine, i.e. (I)–(IV), R22(8) N—H…N hydrogen‐bond motifs are preferred and, in two structures, additional R32(8) patterns were observed.  相似文献   

2.
A series of cocrystals of isoniazid and four of its derivatives have been produced with the cocrystal former 4‐tert‐butylbenzoic acid via a one‐pot covalent and supramolecular synthesis, namely 4‐tert‐butylbenzoic acid–isoniazid, C6H7N3O·C11H14O2, 4‐tert‐butylbenzoic acid–N′‐(propan‐2‐ylidene)isonicotinohydrazide, C9H11N3O·C11H14O2, 4‐tert‐butylbenzoic acid–N′‐(butan‐2‐ylidene)isonicotinohydrazide, C10H13N3O·C11H14O2, 4‐tert‐butylbenzoic acid–N′‐(diphenylmethylidene)isonicotinohydrazide, C19H15N3O·C11H14O2, and 4‐tert‐butylbenzoic acid–N′‐(4‐hydroxy‐4‐methylpentan‐2‐ylidene)isonicotinohydrazide, C12H17N3O2·C11H14O2. The co‐former falls under the classification of a `generally regarded as safe' compound. The four derivatizing ketones used are propan‐2‐one, butan‐2‐one, benzophenone and 3‐hydroxy‐3‐methylbutan‐2‐one. Hydrogen bonds involving the carboxylic acid occur consistently with the pyridine ring N atom of the isoniazid and all of its derivatives. The remaining hydrogen‐bonding sites on the isoniazid backbone vary based on the steric influences of the derivative group. These are contrasted in each of the molecular systems.  相似文献   

3.
A series of five binary complexes, i.e. three cocrystals and two molecular salts, using 2‐chloro‐4‐nitrobenzoic acid as a coformer have been produced with five commonly available compounds, some of pharmaceutical relevance, namely, 2‐chloro‐4‐nitrobenzoic acid–isonicotinamide (1/1), C7H4ClNO4·C6H6N2O, 2‐chloro‐4‐nitrobenzoic acid–3,3‐diethylpyridine‐2,4(1H,3H)‐dione (2/1), 2C7H4ClNO4·C9H13NO2, 2‐chloro‐4‐nitrobenzoic acid–pyrrolidin‐2‐one (1/1), C7H4ClNO4·C4H7NO, 2‐carboxypiperidinium 2‐chloro‐4‐nitrobenzoate, C6H12NO2?·C7H3ClNO4?, and (2‐hydroxyethyl)ammonium 2‐chloro‐4‐nitrobenzoate, C2H8NO+·C7H3ClNO4?. The coformer falls under the classification of a `generally regarded as safe' compound. All five complexes make use of a number of different heteromeric hydrogen‐bonded interactions. Intermolecular potentials were evaluated using the CSD‐Materials module.  相似文献   

4.
Novel cocrystals of promethazine hydrochloride [PTZ‐Cl; systematic name: N,N‐dimethyl‐1‐(10H‐phenothiazin‐10‐yl)propan‐2‐aminium chloride] with succinic acid (PTZ‐Cl‐succinic, C17H21N2S+·Cl?·0.5C4H6O4), fumaric acid (PTZ‐Cl‐fumaric, C17H21N2S+·Cl?·0.5C4H4O4) and adipic acid (PTZ‐Cl‐adipic, C17H21N2S+·Cl?·0.5C6H10O4) were prepared by solvent drop grinding and slow evaporation from acetonitrile solution, along with two oxalic acid cocrystals which were prepared in tetrahydrofuran (the oxalic acid hemisolvate, PTZ‐Cl‐oxalic, C17H21N2S+·Cl?·0.5C2H2O4) and nitromethane (the hydrogen oxalate salt, PTZ‐oxalic, C17H21N2S+·C2HO4?). The crystal structures obtained by crystallization from tetrahydrofuran and acetonitrile include the Cl? ion in the lattice structures, while the Cl? ion is missing from the crystal structure obtained by crystallization from nitromethane (PTZ‐oxalic). In order to explain the formation of the two types of supramolecular configurations with oxalic acid, the intermolecular interaction energies were calculated in the presence of the two solvents and the equilibrium configurations were determined using density functional theory (DFT). The cocrystals were studied by X‐ray diffraction, IR spectroscopy and differential scanning calorimetry. Additionally, a stability test under special conditions and water solubility were also investigated. PTZ‐Cl‐succinic, PTZ‐Cl‐fumaric and PTZ‐Cl‐adipic crystallized having similar lattice parameter values, and showed a 2:1 PTZ‐Cl to dicarboxylic acid stoichiometry. PTZ‐Cl‐oxalic crystallized in a 2:1 stoichiometric ratio, while the structure lacking the Cl atom belongs has a 1:1 stoichiometry. All the obtained crystals exhibit hydrogen bonds of the type PTZ…Cl…(dicarboxylic acid)…Cl…PTZ, except for PTZ‐oxalic, which forms bifurcated bonds between the hydrogen oxalate and promethazinium ions, along with an infinite hydrogen‐bonded chain between the hydrogen oxalate anions.  相似文献   

5.
The understanding of intermolecular interactions is a key objective of crystal engineering in order to exploit the derived knowledge for the rational design of new molecular solids with tailored physical and chemical properties. The tools and theories of crystal engineering are indispensable for the rational design of (pharmaceutical) cocrystals. The results of cocrystallization experiments of the antithyroid drug 6‐propyl‐2‐thiouracil (PTU) with 2,4‐diaminopyrimidine (DAPY), and of 6‐methoxymethyl‐2‐thiouracil (MOMTU) with DAPY and 2,4,6‐triaminopyrimidine (TAPY), respectively, are reported. PTU and MOMTU show a high structural similarity and differ only in the replacement of a methylene group (–CH2–) with an O atom in the side chain, thus introducing an additional hydrogen‐bond acceptor in MOMTU. Both molecules contain an ADA hydrogen‐bonding site (A = acceptor and D = donor), while the coformers DAPY and TAPY both show complementary DAD sites and therefore should be capable of forming a mixed ADA/DAD synthon with each other, i.e. N—H…O, N—H…N and N—H…S hydrogen bonds. The experiments yielded one solvated cocrystal salt of PTU with DAPY, four different solvates of MOMTU, one ionic cocrystal of MOMTU with DAPY and one cocrystal salt of MOMTU with TAPY, namely 2,4‐diaminopyrimidinium 6‐propyl‐2‐thiouracilate–2,4‐diaminopyrimidine–N,N‐dimethylacetamide–water (1/1/1/1) (the systematic name for 6‐propyl‐2‐thiouracilate is 6‐oxo‐4‐propyl‐2‐sulfanylidene‐1,2,3,6‐tetrahydropyrimidin‐1‐ide), C4H7N4+·C7H9N2OS·C4H6N4·C4H9NO·H2O, (I), 6‐methoxymethyl‐2‐thiouracil–N,N‐dimethylformamide (1/1), C6H8N2O2S·C3H7NO, (II), 6‐methoxymethyl‐2‐thiouracil–N,N‐dimethylacetamide (1/1), C6H8N2O2S·C4H9NO, (III), 6‐methoxymethyl‐2‐thiouracil–dimethyl sulfoxide (1/1), C6H8N2O2S·C2H6OS, (IV), 6‐methoxymethyl‐2‐thiouracil–1‐methylpyrrolidin‐2‐one (1/1), C6H8N2O2S·C5H9NO, (V), 2,4‐diaminopyrimidinium 6‐methoxymethyl‐2‐thiouracilate (the systematic name for 6‐methoxymethyl‐2‐thiouracilate is 4‐methoxymethyl‐6‐oxo‐2‐sulfanylidene‐1,2,3,6‐tetrahydropyrimidin‐1‐ide), C4H7N4+·C6H7N2O2S, (VI), and 2,4,6‐triaminopyrimidinium 6‐methoxymethyl‐2‐thiouracilate–6‐methoxymethyl‐2‐thiouracil (1/1), C4H8N5+·C6H7N2O2S·C6H8N2O2S, (VII). Whereas in (I) only an AA/DD hydrogen‐bonding interaction was formed, the structures of (VI) and (VII) both display the desired ADA/DAD synthon. Conformational studies on the side chains of PTU and MOMTU also revealed a significant deviation for cocrystals (VI) and (VII), leading to the desired enhancement of the hydrogen‐bond pattern within the crystal.  相似文献   

6.
The results of seven cocrystallization experiments of the antithyroid drug 6‐methyl‐2‐thiouracil (MTU), C5H6N2OS, with 2,4‐diaminopyrimidine, 2,4,6‐triaminopyrimidine and 6‐amino‐3H‐isocytosine (viz. 2,6‐diamino‐3H‐pyrimidin‐4‐one) are reported. MTU features an ADA (A = acceptor and D = donor) hydrogen‐bonding site, while the three coformers show complementary DAD hydrogen‐bonding sites and therefore should be capable of forming an ADA/DAD N—H...O/N—H...N/N—H...S synthon with MTU. The experiments yielded one cocrystal and six cocrystal solvates, namely 6‐methyl‐2‐thiouracil–2,4‐diaminopyrimidine–1‐methylpyrrolidin‐2‐one (1/1/2), C5H6N2OS·C4H6N4·2C5H9NO, (I), 6‐methyl‐2‐thiouracil–2,4‐diaminopyrimidine (1/1), C5H6N2OS·C4H6N4, (II), 6‐methyl‐2‐thiouracil–2,4‐diaminopyrimidine–N,N‐dimethylacetamide (2/1/2), 2C5H6N2OS·C4H6N4·2C4H9NO, (III), 6‐methyl‐2‐thiouracil–2,4‐diaminopyrimidine–N,N‐dimethylformamide (2/1/2), C5H6N2OS·0.5C4H6N4·C3H7NO, (IV), 2,4,6‐triaminopyrimidinium 6‐methyl‐2‐thiouracilate–6‐methyl‐2‐thiouracil–N,N‐dimethylformamide (1/1/2), C4H8N5+·C5H5N2OS·C5H6N2OS·2C3H7NO, (V), 6‐methyl‐2‐thiouracil–6‐amino‐3H‐isocytosine–N,N‐dimethylformamide (1/1/1), C5H6N2OS·C4H6N4O·C3H7NO, (VI), and 6‐methyl‐2‐thiouracil–6‐amino‐3H‐isocytosine–dimethyl sulfoxide (1/1/1), C5H6N2OS·C4H6N4O·C2H6OS, (VII). Whereas in cocrystal (I) an R22(8) interaction similar to the Watson–Crick adenine/uracil base pair is formed and a two‐dimensional hydrogen‐bonding network is observed, the cocrystals (II)–(VII) contain the triply hydrogen‐bonded ADA/DAD N—H...O/N—H...N/N—H...S synthon and show a one‐dimensional hydrogen‐bonding network. Although 2,4‐diaminopyrimidine possesses only one DAD hydrogen‐bonding site, it is, due to orientational disorder, triply connected to two MTU molecules in (III) and (IV).  相似文献   

7.
8.
Four new cocrystals of pyrimidin‐2‐amine and propane‐1,3‐dicarboxylic (glutaric) acid were crystallized from three different solvents (acetonitrile, methanol and a 50:50 wt% mixture of methanol and chloroform) and their crystal structures determined. Two of the cocrystals, namely pyrimidin‐2‐amine–glutaric acid (1/1), C4H5N3·C6H8O4, (I) and (II), are polymorphs. The glutaric acid molecule in (I) has a linear conformation, whereas it is twisted in (II). The pyrimidin‐2‐amine–glutaric acid (2/1) cocrystal, 2C4H5N3·C6H8O4, (III), contains glutaric acid in its linear form. Cocrystal–salt bis(2‐aminopyrimidinium) glutarate–glutaric acid (1/2), 2C4H6N3+·C6H6O42−·2C6H8O4, (IV), was crystallized from the same solvent as cocrystal (II), supporting the idea of a cocrystal–salt continuum when both the neutral and ionic forms are present in appreciable concentrations in solution. The diversity of the packing motifs in (I)–(IV) is mainly caused by the conformational flexibility of glutaric acid, while the hydrogen‐bond patterns show certain similarities in all four structures.  相似文献   

9.
In order to examine the preferred hydrogen‐bonding pattern of various uracil derivatives, namely 5‐(hydroxymethyl)uracil, 5‐carboxyuracil and 5‐carboxy‐2‐thiouracil, and for a conformational study, crystallization experiments yielded eight different structures: 5‐(hydroxymethyl)uracil, C5H6N2O3, (I), 5‐carboxyuracil–N,N‐dimethylformamide (1/1), C5H4N2O4·C3H7NO, (II), 5‐carboxyuracil–dimethyl sulfoxide (1/1), C5H4N2O4·C2H6OS, (III), 5‐carboxyuracil–N,N‐dimethylacetamide (1/1), C5H4N2O4·C4H9NO, (IV), 5‐carboxy‐2‐thiouracil–N,N‐dimethylformamide (1/1), C5H4N2O3S·C3H7NO, (V), 5‐carboxy‐2‐thiouracil–dimethyl sulfoxide (1/1), C5H4N2O3S·C2H6OS, (VI), 5‐carboxy‐2‐thiouracil–1,4‐dioxane (2/3), 2C5H4N2O3S·3C6H12O3, (VII), and 5‐carboxy‐2‐thiouracil, C10H8N4O6S2, (VIII). While the six solvated structures, i.e. (II)–(VII), contain intramolecular S(6) O—H…O hydrogen‐bond motifs between the carboxy and carbonyl groups, the usually favoured R22(8) pattern between two carboxy groups is formed in the solvent‐free structure, i.e. (VIII). Further R22(8) hydrogen‐bond motifs involving either two N—H…O or two N—H…S hydrogen bonds were observed in three crystal structures, namely (I), (IV) and (VIII). In all eight structures, the residue at the ring 5‐position shows a coplanar arrangement with respect to the pyrimidine ring which is in agreement with a search of the Cambridge Structural Database for six‐membered cyclic compounds containing a carboxy group. The search confirmed that coplanarity between the carboxy group and the cyclic residue is strongly favoured.  相似文献   

10.
At one extreme of the proton‐transfer spectrum in cocrystals, proton transfer is absent, whilst at the opposite extreme, in salts, the proton‐transfer process is complete. However, for acid–base pairs with a small ΔpKa (pKa of base ? pKa of acid), prediction of the extent of proton transfer is not possible as there is a continuum between the salt and cocrystal ends. In this context, we attempt to illustrate that in these systems, in addition to ΔpKa, the crystalline environment could change the extent of proton transfer. To this end, two compounds of salicylic acid (SaH) and adenine (Ad) have been prepared. Despite the same small ΔpKa value (≈1.2), different ionization states are found. Both crystals, namely adeninium salicylate monohydrate, C5H6N5+·C7H5O3?·H2O, I , and adeninium salicylate–adenine–salicylic acid–water (1/2/1/2), C5H6N5+·C7H5O3?·2C5H5N5·C7H6O3·2H2O, II , have been characterized by single‐crystal X‐ray diffraction, IR spectroscopy and elemental analysis (C, H and N) techniques. In addition, the intermolecular hydrogen‐bonding interactions of compounds I and II have been investigated and quantified in detail on the basis of Hirshfeld surface analysis and fingerprint plots. Throughout the study, we use crystal engineering, which is based on modifications of the intermolecular interactions, thus offering a more comprehensive screening of the salt–cocrystal continuum in comparison with pure pKa analysis.  相似文献   

11.
The intermolecular interactions in the structures of a series of Schiff base ligands have been thoroughly studied. These ligands can be obtained in different forms, namely, as the free base 2‐[(2E)‐2‐(1H‐imidazol‐4‐ylmethylidene)‐1‐methylhydrazinyl]pyridine, C10H11N5, 1 , the hydrates 2‐[(2E)‐2‐(1H‐imidazol‐2‐ylmethylidene)‐1‐methylhydrazinyl]‐1H‐benzimidazole monohydrate, C12H12N6·H2O, 2 , and 2‐{(2E)‐1‐methyl‐2‐[(1‐methyl‐1H‐imidazol‐2‐yl)methylidene]hydrazinyl}‐1H‐benzimidazole 1.25‐hydrate, C13H14N6·1.25H2O, 3 , the monocationic hydrate 5‐{(1E)‐[2‐(1H‐1,3‐benzodiazol‐2‐yl)‐2‐methylhydrazinylidene]methyl}‐1H‐imidazol‐3‐ium trifluoromethanesulfonate monohydrate, C12H13N6+·CF3O3S?·H2O, 5 , and the dicationic 2‐{(2E)‐1‐methyl‐2‐[(1H‐imidazol‐3‐ium‐2‐yl)methylidene]hydrazinyl}pyridinium bis(trifluoromethanesulfonate), C10H13N52+·2CF3O3S?, 6 . The connection between the forms and the preferred intermolecular interactions is described and further studied by means of the calculation of the interaction energies between the neutral and charged components of the crystal structures. These studies show that, in general, the most important contribution to the stabilization energy of the crystal is provided by π–π interactions, especially between charged ligands, while the details of the crystal architecture are influenced by directional interactions, especially relatively strong hydrogen bonds. In one of the structures, a very interesting example of the nontypical F…O interaction was found and its length, 2.859 (2) Å, is one of the shortest ever reported.  相似文献   

12.
(Cyclo­hexyl­methyl­oxy­methyl)(1H‐imidazol‐4‐io­methyl)‐(S)‐ammonium dichloride, C13H25N3O+·2Cl?, and (4‐bromo­benzyl)(1H‐imidazol‐4‐io­methyl)‐(S)‐ammonium dichloride, C13H18BrN3O+·2Cl?, are model compounds with different biological activities for evaluation of the hist­amine H3‐receptor activation mechanism. Both title compounds occur in almost similar extended conformations.  相似文献   

13.
A concise and efficient synthesis of a series of amino‐substituted benzimidazole–pyrimidine hybrids has been developed, starting from the readily available N4‐(2‐aminophenyl)‐6‐methoxy‐5‐nitrosopyrimidine‐2,4‐diamine. In each of N5‐benzyl‐6‐methoxy‐4‐(2‐phenyl‐1H‐benzo[d]imidazol‐1‐yl)pyrimidine‐2,5‐diamine, C25H22N6O, (I), 6‐methoxy‐N5‐(4‐methoxybenzyl)‐4‐[2‐(4‐methoxyphenyl)‐1H‐benzo[d]imidazol‐1‐yl]pyrimidine‐2,5‐diamine, C27H26N6O3, (III), 6‐methoxy‐N5‐(4‐nitrobenzyl)‐4‐[2‐(4‐nitrophenyl)‐1H‐benzo[d]imidazol‐1‐yl]pyrimidine‐2,5‐diamine, C25H20N8O5, (IV), the molecules are linked into three‐dimensional framework structures, using different combinations of N—H…N, N—H…O, C—H…O, C—H…N and C—H…π hydrogen bonds in each case. Oxidative cleavage of 6‐methoxy‐N5‐(4‐methylbenzyl)‐4‐[2‐(4‐methylphenyl)‐1H‐benzo[d]imidazol‐1‐yl]pyrimidine‐2,5‐diamine, (II), with diiodine gave 6‐methoxy‐4‐[2‐(4‐methylphenyl)‐1H‐benzo[d]imidazol‐1‐yl]pyrimidine‐2,5‐diamine, which crystallized as a monohydrate, C19H18N6O·H2O, (V), and reaction of (V) with trifluoroacetic acid gave two isomeric products, namely N‐{5‐amino‐6‐methoxy‐6‐[2‐(4‐methylphenyl)‐1H‐benzo[d]imidazol‐1‐yl]pyrimidin‐2‐yl}‐2,2,2‐trifluoroacetamide, which crystallized as an ethyl acetate monosolvate, C21H17F3N6O2·C4H8O2, (VI), and N‐{2‐amino‐6‐methoxy‐4‐[2‐(4‐methylphenyl)‐1H‐benzo[d]imidazol‐1‐yl]pyrimidin‐5‐yl}‐2,2,2‐trifluoroacetamide, which crystallized as a methanol monosolvate, C21H17F3N6O2·CH4O, (VIIa). For each of (V), (VI) and (VIIa), the supramolecular assembly is two‐dimensional, based on different combinations of O—H…N, N—H…O, N—H…N, C—H…O and C—H…π hydrogen bonds in each case. Comparisons are made with some related structures.  相似文献   

14.
A new polymorph of the cinnamic acid–isoniazid cocrystal has been prepared by slow evaporation, namely cinnamic acid–pyridine‐4‐carbohydrazide (1/1), C9H8O2·C6H7N3O. The crystal structure is characterized by a hydrogen‐bonded tetrameric arrangement of two molecules of isoniazid and two of cinnamic acid. Possible modification of the hydrogen bonding was investigated by changing the hydrazide group of isoniazid via an in situ reaction with acetone and cocrystallization with cinnamic acid. In the structure of cinnamic acid–N′‐(propan‐2‐ylidene)isonicotinohydrazide (1/1), C9H8O2·C9H11N3O, carboxylic acid–pyridine O—H...N and hydrazide–hydrazide N—H...O hydrogen bonds are formed.  相似文献   

15.
Pharmaceutical cocrystals are crystalline solids formed by an active pharmaceutical ingredient and a cocrystal former. The cocrystals 2,6‐diaminopyridine (DAP)–piracetam [PIR; systematic name: 2‐(2‐oxopyrrolidin‐1‐yl)acetamide] (1/1), C5H7N3·C6H10N2O2, (I), and 2,6‐diaminopyridine–theophylline (TEO; systematic name: 1,3‐dimethyl‐7H‐purine‐2,6‐dione) (1/1), C5H7N3·C7H8N4O2, (II), were prepared by the solvent‐assisted grinding method and were characterized by IR spectroscopy and powder X‐ray diffraction. Cocrystal (I) crystallized in the orthorhombic space group Pbca and showed a 1:1 stoichiometry. The DAP and PIR molecules are linked by an N—H…O hydrogen‐bond interaction. Self‐assembly of PIR molecules forms a sheet of C (4) and C (7) chains. Cocrystal (II) crystallized in the monoclinic P 21/c space group and also showed a 1:1 stoichiometry. The DAP and TEO molecules are connected by N—H…N and N—H…O hydrogen bonds, forming an R 22(9) heterosynthon. A bidimensional supramolecular array is formed by interlinked DAP–TEO tetramers, producing a two‐dimensional sheet.  相似文献   

16.
Six ammonium carboxylate salts are synthesized and reported, namely 2‐propylammonium benzoate, C3H10N+·C7H5O2, (I), benzylammonium (R)‐2‐phenylpropionate, C6H10N+·C9H9O2, (II), (RS)‐1‐phenylethylammonium naphthalene‐1‐carboxylate, C8H12N+·C11H7O2, (III), benzylammonium–benzoate–benzoic acid (1/1/1), C6H10N+·C7H5O2·C7H6O2, (IV), cyclopropylammonium–benzoate–benzoic acid (1/1/1), C3H8N+·C7H5O2·C7H6O2, (V), and cyclopropylammonium–eacis‐cyclohexane‐1,4‐dicarboxylate–eetrans‐cyclohexane‐1,4‐dicarboxylic acid (2/1/1), 2C3H8N+·C8H10O42−·C8H12O4, (VI). Salts (I)–(III) all have a 1:1 ratio of cation to anion and feature three N+—H...O hydrogen bonds which form one‐dimensional hydrogen‐bonded ladders. Salts (I) and (II) have type II ladders, consisting of repeating R43(10) rings, while (III) has type III ladders, in this case consisting of alternating R42(8) and R44(12) rings. Salts (IV) and (V) have a 1:1:1 ratio of cation to anion to benzoic acid. They have type III ladders formed by three N+—H...O hydrogen bonds, while the benzoic acid molecules are pendant to the ladders and hydrogen bond to them via O—H...O hydrogen bonds. Salt (VI) has a 2:1:1 ratio of cation to anion to acid and does not feature any hydrogen‐bonded ladders; instead, the ionized and un‐ionized components form a three‐dimensional network of hydrogen‐bonded rings. The two‐component 1:1 salts are formed from a 1:1 ratio of amine to acid. To create the three‐component salts (IV)–(VI), the ratio of amine to acid was reduced so as to deprotonate only half of the acid molecules, and then to observe how the un‐ionized acid molecules are incorporated into the ladder motif. For (IV) and (V), the ratio of amine to acid was reduced to 1:2, while for (VI) the ratio of amine to acid required to deprotonate only half the diacid molecules was 1:1.  相似文献   

17.
The X‐ray single‐crystal structure determinations of the chemically related compounds 2‐amino‐1,3,4‐thiadiazolium hydrogen oxalate, C2H4N3S+·C2HO4, (I), 2‐amino‐1,3,4‐thiadiazole–succinic acid (1/2), C2H3N3S·2C4H6O4, (II), 2‐amino‐1,3,4‐thiadiazole–glutaric acid (1/1), C2H3N3S·C5H8O4, (III), and 2‐amino‐1,3,4‐thiadiazole–adipic acid (1/1), C2H3N3S·C6H10O4, (IV), are reported and their hydrogen‐bonding patterns are compared. The hydrogen bonds are of the types N—H...O or O—H...N and are of moderate strength. In some cases, weak C—H...O interactions are also present. Compound (II) differs from the others not only in the molar ratio of base and acid (1:2), but also in its hydrogen‐bonding pattern, which is based on chain motifs. In (I), (III) and (IV), the most prominent feature is the presence of an R22(8) graph‐set motif formed by N—H...O and O—H...N hydrogen bonds, which are present in all structures except for (I), where only a pair of N—H...O hydrogen bonds is present, in agreement with the greater acidity of oxalic acid. There are nonbonding S...O interactions present in all four structures. The difference electron‐density maps show a lack of electron density about the S atom along the S...O vector. In all four structures, the carboxylic acid H atoms are present in a rare configuration with a C—C—O—H torsion angle of ∼0°. In the structures of (II)–(IV), the C—C—O—H torsion angle of the second carboxylic acid group has the more common value of ∼|180|°. The dicarboxylic acid molecules are situated on crystallographic inversion centres in (II). The Raman and IR spectra of the title compounds are presented and analysed.  相似文献   

18.
Doubly and triply hydrogen‐bonded supramolecular synthons are of particular interest for the rational design of crystal and cocrystal structures in crystal engineering since they show a high robustness due to their high stability and good reliability. The compound 5‐methyl‐2‐thiouracil (2‐thiothymine) contains an ADA hydrogen‐bonding site (A = acceptor and D = donor) if the S atom is considered as an acceptor. We report herein the results of cocrystallization experiments with the coformers 2,4‐diaminopyrimidine, 2,4‐diamino‐6‐phenyl‐1,3,5‐triazine, 6‐amino‐3H‐isocytosine and melamine, which contain complementary DAD hydrogen‐bonding sites and, therefore, should be capable of forming a mixed ADADAD N—H…S/N—H…N/N—H…O synthon (denoted synthon 3sN·S;N·N;N·O), consisting of three different hydrogen bonds with 5‐methyl‐2‐thiouracil. The experiments yielded one cocrystal and five solvated cocrystals, namely 5‐methyl‐2‐thiouracil–2,4‐diaminopyrimidine (1/2), C5H6N2OS·2C4H6N4, (I), 5‐methyl‐2‐thiouracil–2,4‐diaminopyrimidine–N,N‐dimethylformamide (2/2/1), 2C5H6N2OS·2C4H6N4·C3H7NO, (II), 5‐methyl‐2‐thiouracil–2,4‐diamino‐6‐phenyl‐1,3,5‐triazine–N,N‐dimethylformamide (2/2/1), 2C5H6N2OS·2C9H9N5·C3H7NO, (III), 5‐methyl‐2‐thiouracil–6‐amino‐3H‐isocytosine–N,N‐dimethylformamide (2/2/1), (IV), 2C5H6N2OS·2C4H6N4O·C3H7NO, (IV), 5‐methyl‐2‐thiouracil–6‐amino‐3H‐isocytosine–N,N‐dimethylacetamide (2/2/1), 2C5H6N2OS·2C4H6N4O·C4H9NO, (V), and 5‐methyl‐2‐thiouracil–melamine (3/2), 3C5H6N2OS·2C3H6N6, (VI). Synthon 3sN·S;N·N;N·O was formed in three structures in which two‐dimensional hydrogen‐bonded networks are observed, while doubly hydrogen‐bonded interactions were formed instead in the remaining three cocrystals whereby three‐dimensional networks are preferred. As desired, the S atoms are involved in hydrogen‐bonding interactions in all six structures, thus illustrating the ability of sulfur to act as a hydrogen‐bond acceptor and, therefore, its value for application in crystal engineering.  相似文献   

19.
The structures of the 1:1 proton‐transfer compounds of isonipecotamide (piperidine‐4‐carboxamide) with 4‐nitrophthalic acid [4‐carbamoylpiperidinium 2‐carboxy‐4‐nitrobenzoate, C6H13N2O8+·C8H4O6, (I)], 4,5‐dichlorophthalic acid [4‐carbamoylpiperidinium 2‐carboxy‐4,5‐dichlorobenzoate, C6H13N2O8+·C8H3Cl2O4, (II)] and 5‐nitroisophthalic acid [4‐carbamoylpiperidinium 3‐carboxy‐5‐nitrobenzoate, C6H13N2O8+·C8H4O6, (III)], as well as the 2:1 compound with terephthalic acid [bis(4‐carbamoylpiperidinium) benzene‐1,2‐dicarboxylate dihydrate, 2C6H13N2O8+·C8H4O42−·2H2O, (IV)], have been determined at 200 K. All salts form hydrogen‐bonded structures, viz. one‐dimensional in (II) and three‐dimensional in (I), (III) and (IV). In (I) and (III), the centrosymmetric R22(8) cyclic amide–amide association is found, while in (IV) several different types of water‐bridged cyclic associations are present [graph sets R42(8), R43(10), R44(12), R33(18) and R64(22)]. The one‐dimensional structure of (I) features the common `planar' hydrogen 4,5‐dichlorophthalate anion, together with enlarged cyclic R33(13) and R43(17) associations. In the structures of (I) and (III), the presence of head‐to‐tail hydrogen phthalate chain substructures is found. In (IV), head‐to‐tail primary cation–anion associations are extended longitudinally into chains through the water‐bridged cation associations, and laterally by piperidinium–carboxylate N—H...O and water–carboxylate O—H...O hydrogen bonds. The structures reported here further demonstrate the utility of the isonipecotamide cation as a synthon for the generation of stable hydrogen‐bonded structures. An additional example of cation–anion association with this cation is also shown in the asymmetric three‐centre piperidinium–carboxylate N—H...O,O′ interaction in the first‐reported structure of a 2:1 isonipecotamide–carboxylate salt.  相似文献   

20.
The combination of the active pharmaceutical ingredients furosemide [4‐chloro‐2‐(furan‐2‐ylmethylamino)‐5‐sulfamoylbenzoic acid] and pentoxifylline [3,7‐dimethyl‐1‐(5‐oxohexyl)‐3,7‐dihydro‐1H‐purine‐2,6‐dione] produces a 1:1 cocrystal, C12H11ClN2O5S·C13H18N4O3, (I), a 1:1 cocrystal hydrate, C12H11ClN2O5S·C13H18N4O3·H2O, (II), and a 1:1 cocrystal acetone solvate, C12H11ClN2O5S·C13H18N4O3·C2H6O, (III). These structures exhibit the presence of a rarely encountered synthon with the graph set R22(7). All potential hydrogen‐bond donors of furosemide participate in hydrogen‐bond formation in (I)–(III). However, only two hydrogen‐bond acceptors of furosemide are active in (I) and (II), and only one is active in (III). Four hydrogen‐bond acceptors of pentoxifylline are active in (II), three in (I) and two in (III). These observations are in good agreement with the calculated packing indexes of 69.5, 69.6 and 68.8% for (II), (I) and (III), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号