首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate the mechanical properties of a two-dimensional amorphous solid. It is formed spontaneously by the adsorption of a protein (the β-lactoglobulin) at the surface of water. We measure its mechanical response in both elastic and plastic regimes by applying a point-like force (using a glass fiber). We compare our results with previous measurements of shear moduli using a floating torsion device. Received: 10 February 2003 / Accepted: 23 April 2003 / Published online: 27 May 2003 RID="a" ID="a"Present address: Cavendish Laboratory, Madingley Road, Cambridge, CB3 0HE, UK; e-mail: sc374@phy.cam.ac.uk RID="b" ID="b"e-mail: graner@ujf-grenoble.fr  相似文献   

2.
Dispersive flow of disks through a two-dimensional Galton board   总被引:1,自引:0,他引:1  
We report here an experimental and numerical study of the flow properties of disks driven by gravity through a hexagonal lattice of obstacles, i.e. a Galton board. During the fall, particles experience dissipative collisions that scatter them in random directions. A driven-diffusion regime can be achieved under certain conditions. A characteristic length of the motion and its dependence on geometrical parameters of the system is analyzed in the steady regime. The influence of collective effects on the dispersion process is investigated by comparison between single- and many-particle flows. The characterization of the dynamics and the diffusive properties of the flow in a system like a Galton board can be expanded to other granular systems, particularly static solid particle mixers and will give some insight in understanding granular mixing.  相似文献   

3.
A set of 3873 cracks on exposed granite rock surfaces are analyzed in order to investigate possible fracture mechanisms. The fracture patterns are compared with the Mohr-Coulomb and the Roscoe fracture models, which can be combined into a single fracture scheme. A third model for comparison is based on interacting `penny-shaped' micro cracks introduced by Healy et al. [Nature 439, 64 (2006)]. The former models predict a bimodal fracture angle distribution, with two narrow peaks separated by 60-90 symmetrically on both sides of the direction of the largest principal stress, while the latter predicts a single broader peak in the same direction with standard deviation in the range 15-20. The crack length distributions seem consistent with numerical simulation, whereas the fracture patterns are Euclidean rather than fractal. The statistical analyses indicate that none of the models fully describe the fracture patterns. It seems that natural shear fractures easily become a complex combination of different fracture mechanisms.  相似文献   

4.
This paper proposes a simple model of transient networks of telechelic associating polymers for molecular simulations and reports the main results obtained by molecular dynamics on the rheological properties of the transient networks. The steady shear viscosity obtained by the non-equilibrium molecular dynamics simulation exhibits shear thickening at moderate shear rates and shear thinning at larger shear rates. The behavior is similar to that observed in experiments of telechelic associating polymers. By analyzing the distribution function of the end-to-end vector of bridge chains as a function of the shear rate, we find that shear thickening is mainly caused by the stress from the bridge chains highly stretched by shear flow. We also find that fracture of the transient network occurs in the shear-thinning regime at high shear rates.  相似文献   

5.
We investigate the plastic deformation and constitutive behaviour of bulk metallic glasses (BMGs). A dimensionless Deborah number DeiD = tr/ti is proposed to characterize the rate effect in BMGs, where tr is the structural relaxing characteristic time of BMGs under shear load, ti is the macroscopic imposed characteristic time of applied stress or the characteristic time of macroscopic deformation. The results demonstrate that the modified free volume model can characterize the strain rate effect in BMGs effectively.  相似文献   

6.
We suggest a scalar model for deformation and flow of an amorphous material such as a foam or an emulsion. To describe elastic, plastic and viscous behaviours, we use three scalar variables: elastic deformation, plastic deformation rate and total deformation rate; and three material-specific parameters: shear modulus, yield deformation and viscosity. We obtain equations valid for different types of deformations and flows slower than the relaxation rate towards mechanical equilibrium. In particular, they are valid both in transient or steady flow regimes, even at large elastic deformation. We discuss why viscosity can be relevant even in this slow shear (often called “quasi-static”) limit. Predictions of the storage and loss moduli agree with the experimental literature, and explain with simple arguments the non-linear large amplitude trends.  相似文献   

7.
8.
We propose a phenomenological model of boundary lubricated junctions consisting of a few layers of small molecules which describes the rheological properties of these sytems both in the static, frozen, and sliding, molten, states as well as the dynamical transition between them. Two dynamical regimes can be distinguished, according to the level of internal damping of the junction, which depends on its thickness and on the normal load. In the overdamped regime, under driving at constant velocity v through an external spring, the motion evolves continuously from “atomic stick-slip” to modulated sliding. Underdamped systems exhibit, under given external stress, a range of dynamic bistability where the sheared static state coexists with a steadily sliding one. The frictional dynamics under shear driving is analyzed in detail, it provides a complete account of the qualitative dynamical scenarios observed by Israelashvili et al., and yields semiquantitative agreement with experimental data. A few complementary experimental tests of the model are suggested. Received: 18 December 1997 / Received in final form and accepted: 26 March 1998  相似文献   

9.
The plastic flow of a foam results from bubble rearrangements. We study their occurrence in experiments where a foam is forced to flow in 2D: around an obstacle; through a narrow hole; or sheared between rotating disks. We describe their orientation and frequency using a topological matrix defined in the companion paper (F. Graner, B. Dollet, C. Raufaste, and P. Marmottant, this issue, 25 (2008) DOI 10.1140/epje/i2007-10298-8), which links them with continuous plasticity at large scale. We then suggest a phenomenological equation to predict the plastic strain rate: its orientation is determined from the foam's local elastic strain; and its rate is determined from the foam's local elongation rate. We obtain a good agreement with statistical measurements. This enables us to describe the foam as a continuous medium with fluid, elastic and plastic properties. We derive its constitutive equation, then test several of its terms and predictions.  相似文献   

10.
The transformation of the so-called matrix structure into persistent slip bands (PSBs) during the fatigue of copper single crystals has been investigated by transmission electron microscopy (TEM). By cyclic pre-deformation a saturated, hard matrix structure was established which is not capable of further hardening. A sudden increase of the applied amplitude of the resolved plastic shear strain initiated the transformation of the matrix structure into PSBs. The number of deformation cycles with enlarged amplitude of resolved plastic shear strain was increased from experiment to experiment in order to obtain crystals with PSBs in consecutive stages of evolution. Surface observations indicated strain localization well before first fragments of the typical ladder-like dislocation pattern of PSBs could be identified in the bulk. From our experiments, we conclude that the transformation from the matrix structure into PSBs very likely starts from the centers of the veins which exhibit small dislocation-poor, soft areas. These areas are enclosed by a harder shell, where a high dislocation density is maintained and which may develop into first dislocation walls. During the evolution of PSBs the frequency distribution of the wall spacings narrows. This indicates that a shift of dislocation walls (1–2 nm/cycle) plays an important rôle in establishing the typical regular ladder-like dislocation pattern of well-developed PSBs.  相似文献   

11.
We report on the shear-thickening transition observed in dilute aqueous solutions of cetyltrimethylammonium tosylate (CTAT) at concentrations . We have re-examined the kinetics of the shear-thickening transition using start-up experiments at rates above the critical shear rate . Using simple well-defined protocols, we have found that the transient mechanical response depends dramatically on the thermal and on the shear histories. Using the same protocols, flow birefringence experiments were carried out. The gap of a Couette cell containing the sheared solution has been visualized between crossed polarizers in steady shear conditions, as well as in start-up experiments. We show that the birefringent shear-induced phase starts from the inner cylinder and grows along the velocity gradient direction, as in a shear banding situation. However, around we have not observed a regime of phase coexistence (isotropic and birefringent). Received 11 November 1999  相似文献   

12.
孙保安  王利峰  邵建华 《物理学报》2017,66(17):178103-178103
非晶材料是由液体快冷冻结而成的结构无序的亚稳态固体.在受力条件下,非晶材料表现出独特和复杂的流变行为,具有跨尺度的高度时空不均匀特征,并在一定条件下表现出自组织临界行为,和自然界以及物理系统中许多复杂体系的动力学行为相似.本文结合作者近年来在非晶合金流变行为方面的研究结果,对非晶材料流变的研究进展和物理机制的认识进行介绍,包括非晶材料流变的跨尺度特征、表征和微观结构机制,以及近年来发现的非晶力学流变的自组织临界行为、物理机制等.最后,对非晶材料流变行为研究中亟需解决的问题进行了总结和展望.  相似文献   

13.
We investigate experimentally the linear viscoelastic properties of a lamellar liquid foam as a function of the cell size and spatial organisation. The system consists of multilamellar vesicles generated by a simple shear flow on a lyotropic lamellar phase. The vesicles can be prepared either in an amorphous or a spatially ordered state. Their size is easily tunable in the range R = 0.5-15 μm. Whereas the shear modulus of the amorphous lamellar foam is alike that of usual liquid foams or concentrated emulsions and scales linearly with 1/R, the elastic modulus of the ordered foam is almost independent of the cell size. This result --probably the first describing the elasticity of an ordered foam-like system-- remains unexplained. Received 7 August 2000  相似文献   

14.
We study the segregation of granular mixtures in two-dimensional silos using a recently proposed set of coupled equations for surface flows of grains. We study the thick flow regime, where the grains are segregated in the rolling phase. We incorporate this dynamical segregation process, called kinematic sieving, free-surface segregation or percolation, into the theoretical formalism and calculate the profiles of the rolling species and the concentration of grains in the bulk in the steady state. Our solution shows the segregation of the mixture with the large grains being found at the bottom of the pile in qualitative agreement with experiments. Received: 6 July 1998 / Revised and Accepted: 13 August 1998  相似文献   

15.
We have studied shearing in M2AlC phases (M=Sc,Y,La,Ti,Zr,Hf,V,Nb,Ta,Cr,Mo,W) using ab initio calculations. We propose that these phases can be classified into two groups based on the valence electron concentration induced changes in C44. One group comprises M=V B and VIB, where the C44 values are approximately 170 GPa and independent of the corresponding MC. The other group includes M=IIIB and IVB, where the C44 shows a linear dependency with the corresponding MC. This may be understood based on the electronic structure: shear resistant bands are filled in M2AlC phases with M=V B and VIB, while they are not completely filled when M=IIIB and IVB. This notion is also consistent with our stress-strain analysis. These valence electron concentration induced changes in shear behaviour were compared to previously published valence electron concentration induced changes in compression behaviour [Z. Sun, D. Music, R. Ahuja, S. Li, J.M. Schneider, Phys. Rev. B 70 (2004) 092102]. These classification proposals exhibit identical critical valence electron concentration values for the group boundary. However, the physical mechanisms are not identical: the classification proposal for the bulk modulus is based on MC-A coupling, while shearing is based on MC-MC coupling.  相似文献   

16.
We studied viscoelastic properties and scaling behavior of multilamellar vesicles (MLVs) confined between two parallel plates as a function of the shear rate and sample thickness (gap size between parallel plates). The rheological properties are classified into two regimes; the shear-thinning regime at high shear rates and the shear-thickening regime at low shear rates. In the former, the MLV radius results from the mechanical balance between the effective surface tension σeff and viscous stress force. The MLV radius is independent of the gap size. σeff estimated by van der Linden model is 2.1 ±0.15 ×10-4 Nm-1 corresponding to the same value obtained by SANS measurement. Power law exponents for the steady state viscosity and yield stress against pre-shear rate ( , ) well agree with prediction based on the layering of membranes. Therefore, viscoelastic properties in this regime could be modeled by assuming that the dynamics of MLVs are driven by layering of MLV polydomains, which could be accompanied by the viscous dissipation, i.e., the stress relaxation on the MLV, induced by continuous sequence of yields of MLVs. The flow curve is empirically explained by the assumption of a relaxation time for the MLV shape. In the latter, however, scaling laws observed in the shear-thinning regime break down. The MLV radius increases when the gap size is reduced below the threshold value and MLV is no longer formed at very small gap sizes. Different dynamics from the shear-thinning regime seem to dominate the viscoelasticity.  相似文献   

17.
We study the behavior under flow of soft spherical micelles forming a fcc phase at high volume fraction. Due to the size (300 ?) of the elementary objects, the structure can be investigated through X-rays and neutron scattering, at rest and under flow in a Couette cell. Using scattering in two perpendicular directions, different mechanisms of flow are identified. At intermediate shear (around 100 s-1) the system exhibits the so called layer sliding mechanism where two dimensional hexagonal compact planes of spheres align themselves with the Couette cell walls. At lower shear rate, the fcc structure is locally preserved, and the flow is mediated by defects between crystallites. At high shear rate, we observe the melting of the structure and a liquid-like structure factor. Moreover, we were able to use the existence of the layer sliding regime to generate a fcc monocrystal by annealing the satcking faults between the decorrelated planes created by the layer sliding. Received: 7 July 1997 / Received in final form: 16 January 1998 / Accepted: 5 March 1998  相似文献   

18.
19.
A stochastic approach to dislocation dynamics is proposed that starts off from considering the geometrically necessary fluctuations of the local stress and strain rate caused by long-range dislocation interactions during plastic flow. On a mesoscopic scale, a crystal undergoing plastic deformation is thus considered an effective fluctuating medium. The auto- and cross-correlation functions of the effective stress and the plastic strain rate are derived. The influences of dislocation multiplication, storage and cross slip on the correlation functions are discussed. Various analogies and fundamental differences to the statistical mechanics of thermodynamic equilibrium are outlined. Application of the theory of noise-induced transitions to dislocation dynamics gives new insight into the physical origin of the spontaneous formation of dislocation structures during plastic deformation. The results demonstrate the importance of the strain-rate sensitivity in dislocation patterning.  相似文献   

20.
This paper presents numerical findings on rapid 2D and 3D granular flows on a bumpy base. In the supported regime studied here, a strongly sheared, dilute and agitated layer spontaneously appears at the base of the flow and supports a compact packing of grains moving as a whole. In this regime, the flow behaves like a sliding block on the bumpy base. In particular, for flows on a horizontal base, the average velocity decreases linearly in time and the average kinetic energy decreases linearly with the travelled distance, those features being characteristic of solid-like friction. This allows us to define and measure an effective friction coefficient, which is independent of the mass and velocity of the flow. This coefficient only loosely depends on the value of the micromechanical friction coefficient whereas the infuence of the bumpiness of the base is strong. We give evidence that this dilute and agitated layer does not result in significantly less friction. Finally, we show that a steady regime of supported flows can exist on inclines whose angle is carefully chosen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号