首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Photodynamic Therapy of 9L Gliosarcoma with Liposome-Delivered Photofrin   总被引:5,自引:1,他引:5  
Abstract— The effect of Photofrin encapsulated in a liposome delivery vehicle for photodynamic therapy (PDT) of the 9L gliosarcoma and normal rat brain was tested. We hypothesized that the liposome vehicle enhances therapeutic efficacy, possibly by increasing tumor tissue concentration of Photofrin. Male Fisher rats bearing a 9L gliosarcoma were treated 16 days after intracerebral tumor implantation with either Photofrin in dextrose (n = 5) or Photofrin in liposome (n = 6). Nontumor-bearing animals were treated with Photofrin delivered either in dextrose (n = 4) or liposome (n = 4) vehicle. Tissue concentrations of Photofrin delivered either in dextrose (n = 4) or liposome (n = 4) vehicle were measured in tumor, brain adjacent to tumor and in normal brain tissue. Photofrin was administered (intraperitoneally) at a dose of 12.5 mg/kg and PDT (17 J/cm2 of 632 nm light at 100 mW/cm2) was performed 24 h after Photofrin administration. Brains were removed 24 h after PDT and stained with hematoxylin and eosin for analysis of cellular damage. The PDT using Photofrin in the liposome vehicle caused significantly more damage to the tumor ( P < 0.001) than did PDT with Photofrin in dextrose. The PDT of tumor with Photofrin delivered in liposomes caused a 22% volume of cellular necrosis, while PDT of tumor with Photofrin delivered in dextrose caused only scattered cellular damage. Photofrin concentration in tumors was significantly higher ( P = 0.021) using liposome (33.8 ± 18.9 μg/g) compared to dextrose delivery (5.5 ± 1.5 μg/g). Normal brain was affected similarly in both groups, with only scattered cellular necrosis. Our data suggest that the liposome vehicle enhances the therapeutic efficacy of PDT treatment of 9L tumors.  相似文献   

2.
Abstract— Several studies have reported thrombus formation and/or the release of specific vasoactive eicosanoids, suggesting that platelet activation or damage after photodynamic therapy (PDT) may contribute to blood flow stasis. The role of circulating platelets on blood flow stasis and vascular leakage of macromolecules during and after PDT was assessed in an intravital animal model. Sprague-Daw-ley rats bearing chondrosarcoma on the right hind limb were injected intravenously (i.v.) with 25 mg/kg Photofrin 24 h before light treatment of 135 J/cm2 at 630 nm. Thrombocytopenia was induced in animals by administration of 3.75 mg/kg of rabbit anti-rat platelet antibody i.v. 30 min before the initiation of the light treatment. This regimen reduced circulating platelet levels from 300000/mm3 to 20000/mm3. Reductions in the luminal diameter of the microvasculature in normal muscle and tumor were observed in control animals given Photofrin and light. Venule leakage of macromolecules was noted shortly after the start of light treatment and continued throughout the period of observation. Animals made thrombocytopenic showed none of these changes after PDT in either normal tissues or tumor. The lack of vessel response correlated with the absence of thromboxane release in blood during PDT. These data suggest that platelets and eicosanoid release are necessary for vessel constriction and blood flow stasis after PDT using Photofrin.  相似文献   

3.
The polar methanolic fraction (PMF) of the Hypericum perforatum L. extract has recently been developed and tested as a novel, natural photosensitizer for use in the photodynamic therapy (PDT), and photodynamic diagnosis (PDD). PMF has been tested on HL-60 leukemic cells and cord blood hemopoietic progenitors. In the present study, the efficacy of PMF as a phototoxic agent against urinary bladder carcinoma has been studied using the T24 (high grade metastatic cancer), and RT4 (primary low grade papillary transitional cell carcinoma) human bladder cancer cells. Following cell culture incubation, PMF was excited using 630 nm laser light. The photosensitizer exhibited significant photocytotoxicity in both cell lines at a concentration of 60microg/ml, with 4-8 J/cm(2) light dose, resulting in cell destruction from 80% to 86%. At the concentration of 20microg/ml PMF was not active in either cell line. These results were compared with the results obtained in the same cell lines, under the same conditions with a clinically approved photosensitizer, Photofrin. Photofrin was used in the maximum clinically tolerable dose of 4microg/ml, and it was also excited with 630 nm laser light. In the T24 cell Photofrin exhibited slightly less photocytotocixity, compared with PMF, resulting in 77% cell death with 8J/cm(2) light dose. However, against the RT4 cells Photofrin resulted in minimal cell death (9%) with even 8J/cm(2) light dose. Finally, the type of cell death induced by PMF photoactivation was studied using flow cytometry and DNA laddering. Cell death by PMF photodynamic action in these two bladder cell lines is caused predominently by apoptosis. The reported significant photocytotoxicity, selective localization, natural abundance, easy, and inexpensive preparation, underscore that the PMF extract hold the promise of being a novel, effective PDT photosensitizer.  相似文献   

4.
The relationship between levels of in vivo accumulated photosensitizer (Photofrin II), photodynamic cell inactivation upon in vitro or in vivo illumination, and changing tumor oxygenation was studied in the radiation-induced fibrosarcoma (RIF) mouse tumor model. In vivo porphyrin uptake by tumor cells was assessed by using 14C-labeled photosensitizer, and found to be linear with injected photosensitizer dose over a range of 10 to 100 mg/kg. Cellular photosensitivity upon exposure in vitro to 630 nm light also varied linearly with in vivo accumulated photosensitizer levels in the range of 25 to 100 mg/kg injected Photofrin II, but was reduced at 10 mg/kg. Insignificant increases in direct photodynamic cell inactivation were observed following in vivo light exposure (135 J/cm2, 630 nm) with increasing cellular porphyrin levels. These data were inconsistent with expected results based on in vitro studies. Assessment of vascular occlusion and hypoxic cell fractions following photodynamic tumor treatment showed the development of significant tumor hypoxia, particularly at 50 and 100 mg/kg of Photofrin II, following very brief light exposures (1 min, 4.5 J/cm2). The mean hyupoxic cell fractions of 25 to 30% in these tumors corresponded closely with the surviving cell fractions found after tumor treatment in vivo, indicating that these hypoxic cells had been protected from PDT damage. Inoculation of tumor cells, isolated from tumors after porphyrin exposure, into porphyrin-free hosts, followed by in vivo external light treatment, resulted in tumor control in the absence of vascular tumor bed effects at high photosensitizer doses only.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Abstract— Proton magnetic resonance imaging (MRI) and histological methods were used to evaluate photodynamic therapy (PDT)-induced hemorrhagic necrosis in the murine Ml tumor within 72 h of treatment of male DBA/2 mice. The effects of three photosensitizing drugs were investigated: Photofrin (n = 4), Zn (II) phthalocyanine (n = 7) and benzoporphyrin derivative monoacid ring A (n = 11). As noted in previous studies of PDT using MRI, MRI makes possible serial, noninvasive, in vivo observation of tissue response to PDT. Our serial study of MRI and histological data confirms that tumors responded in the same way to PDT treatment using the three photosensitizing drugs: vascular damage followed by hemorrhagic necrosis. Most importantly and unlike previous MRI studies of PDT, we used a very high field magnet that enhanced the effect of magnetic susceptibility on image signal when blood is processed by the body after PDT-induced hemorrhagic necrosis. This last finding demonstrates the utility of high field magnets and the importance of localized, serial experiments in future magnetic resonance studies of PDT.  相似文献   

6.
The purpose of this work was to gain insight into the role played by platelets and endothelial cells in the development of thrombogenic vascular events, observed after in vivo photodynamic therapy (PDT), by studying the in vitro effects of PDT on isolated human platelets and cultured human and bovine endothelial cells. Exposure to Photofrin II (PII) and light caused platelets to rapidly lose their ability to aggregate. Photofrin II alone at high concentrations also exerted inhibitory effects on aggregation. Endothelial cells exposed to PII- and phthalocyanine (GaCl-PcS2,3 or Zn-PCS1,2)-mediated PDT released potent platelet anti- and disaggregating activity which could be identified as prostacyclin by the following criteria: a close correlation between the time and dose dependent anti-aggregating effects and released 6-keto-PGF1 alpha (the spontaneous hydrolysis product of PGI2, determined by radioimmunoassay), the inhibition of these effects by indomethacin, accumulation of 6-keto-PGF1 alpha metabolite in the media of cells treated with PDT (as determined by HPLC analysis), and the absence of evidence for significant nitric oxide production. This prostacyclin release occurred following plasma membrane damage. Although no pro-aggregating activity was observed, endothelial cells were found to release considerable amounts of arachidonic acid and prostaglandin F2 alpha in response to PDT. These data, which indicate powerful anti-thrombogenic effects in vitro, are in sharp contrast to the vascular effects of PDT in vivo which are characterized by severe platelet aggregation, and imply that the in vivo effects involve additional components of the vascular system.  相似文献   

7.
TUMOR DESTRUCTION IN PHOTODYNAMIC THERAPY   总被引:2,自引:0,他引:2  
Abstract The effects of photodynamic therapy (PDT) on the tumor microvasculature in the first few hours after treatment was studied at the light microscope (LM) and electron microscope (EM) levels in DBA/2Ha mice bearing SMT-F tumors. Animals received intraperitoneal injections of 10 mg kg of Photofrin II and 24 h later tumors were treated with 100 J cm−2 of light (630 nm). Animals were sacrificed and their tumors removed at time 0, 30 min, 1, 2, 4, 8, 16 and 24 h after treatment. The results indicate that the effects of PDT are initially direct destruction of the microfibrils in the subendothelial zone of the tumor capillaries with subsequent tumor cell death secondary to hemorrhage and vascular collapse.  相似文献   

8.
Abstract— Photodynamic therapy disrupts blood flow to tumors and produces tumor necrosis. These effects may be due to a localized generation of singlet oxygen. The current studies used direct observations of the rat cremaster microvasculature to examine the vascular effects of PDT. The objective of the morphological examination was to delineate the structural basis for the altered blood flow in photodynamic therapy. Dihematoporphyrin ether given 30 min or 48 h prior to the experiment was activated with green light (wavelength530–560 nm, 120 J/cm2). After the in vivo activation the tissues were prepared for electron microscopy. Light alone induced little or no change in the luminal content or vessel wall. On exposure to activating light both acute (30 min) and long term (48 h) dihematoporphyrin ether pretreated samples displayed formation of luminal aggregates, granulocyte margination and migration, and endothelial cell and smooth muscle cell damage. The latter was more pronounced in the arterioles than the venules. Perivascular changes included interstitial edema and damage to striated myocytes. Some of the alterations such as interstitial edema may be transient; however, smooth and skeletal muscle cell injury are important in normal and tumor tissue necrosis after photodynamic therapy.  相似文献   

9.
Photodynamic Therapy of Human Glioma (U87) in the Nude Rat   总被引:3,自引:1,他引:3  
Abstract— We measured the response of normal brain and the human U87 glioma implanted in the brain of rats (n = 65) to photodynamic therapy (PDT) using Photofrin as the sensitizer. Normal brain and U87 tumor implanted within brain of athymic (nude) rats were subjected to PDT (12.5 mg/kg of Photofrin) at increasing optical energy doses (35 J/cm2, 140 J/cm2, 280 J/cm2) of 632 nm light. Photofrin concentration in tumor, brain adjacent to tumor and normal brain were measured in a separate population of rats. Twenty-four hours after PDT, the brains were removed, sectioned, stained with hematoxylin and eosin (H&E), and the volumes of the PDT-induced lesion measured. Photofrin concentration in tumor greatly exceeded that of normal brain and brain adjacent to tumor (>20×). Both normal brain and U87 tumor exhibited superficial tissue damage with PDT at 35 J/cm2. However, both normal and tumor-implanted brain exhibited tissue damage with increasing optical dose. A heterogeneous pattern of pannecrosis along with a uniform volume of pannecrosis was detected in the tumor. In contrast, normal brain exhibited a uniform sharply demarcated volume of necrosis. Our data indicate that the U87 human brain tumor model and the normal brain in the athymic rat are sensitive to PDT and Photofrin with an optical dose-dependent response to treatment.  相似文献   

10.
Abstract Although hematoporphyrin derivative (HPD) and its 'purers' variety Photofrin II are the most widely used tissue sensitizers in both clinical and experimental photodynamic therapy (PDT), quantitative studies of tissue distribution have been few. We have extracted and measured Photofrin II in several organs of the normal mouse including those of relevance to urological practice. In view of the reported heterogeneities in the distribution within tissues of various cytotoxics when administered intraperitoneally. we have compared results for Photofrin II given by this route with those for intravenous injection. Although both routes of administration gave equally consistent results, differences in absolute tissue concentration as a function of time after injection were found for several but not all tissues. Furthermore, the porphyrin accumulated following intravenous administration seemed to contain more of the non-polar photodynamically active component than that accumulated following the intraperitoneal route. We attempt to explain these differences by reference to published data on porphyrin binding to serum proteins.  相似文献   

11.
This study was designed to investigate the efficacy of photodynamic therapy (PDT) in treating colonic cancer in a preclinical study. Photofrin, a porphyrin mixture, and pheophorbide a (Ph a), a bacteriochlorin, were tested on HT29 human colonic tumor cells in culture and xenografted into athymic mice. Their pharmacokinetics were investigated in vitro, and the PDT efficacy at increasing concentrations was determined with proliferative, cytotoxic and apoptotic assessments. The in vivo distribution and pharmacokinetics of these dyes (30 mg/kg, intraperitoneal) were investigated on HT29 tumor-bearing nude mice. The inhibition of tumor growth after a single 100 J/cm2 PDT session was measured by the changes in tumor volume and by histological analysis of tumor necrosis. PDT inhibited HT29 cell growth in culture. The cell photodamage occurred since the time the concentrations of Ph a and Photofrin reached 5.10(-7) M (or 0.3 microg/mL) and 10 microg/mL, respectively. A photosensitizer dose-dependent DNA fragmentation was observed linked to a cleavage of poly(ADP-ribose) polymerase and associated with an increased expression of mutant-type p53 protein. PDT induced a 3-week delay in tumor growth in vivo. The tumor injury was corroborated by histological observation of necrosis 48 h after treatment, with a correlated loss of specific enzyme expression in most of the tumor cells. In conclusion, PDT has the ability to destroy human colonic tumor cells in vitro and in vivo. This tumoricidal effect is likely associated with a p53-independent apoptosis, as HT29 cells express only mutated p53. The current study suggests a preferential use of Photofrin in PDT of colonic cancer because it should be more effective in vivo than Ph a as a consequence of better tumor uptake.  相似文献   

12.
Singlet oxygen (1O2) is thought to be the cytotoxic agent in photodynamic therapy (PDT) with current photosensitizers. Direct monitoring of 1O2 concentration in vivo would be a valuable tool in studying biological response. Attempts were made to measure 1O2 IR luminescence during PDT of cell suspensions and two murine tumour models using the photosensitizers Photofrin II and aluminium chlorosulphonated phthalocyanine. Instrumentation was virtually identical to that devised by Parker in the one positive report of in vivo luminescence detection in the literature. Despite the fact that our treatments caused cell killing and tissue necrosis, we were unable to observe 1O2 emission under any conditions. We attribute this negative result to a reduction in 1O2 lifetime in the cellular environment. Quantitative calibration of our system allowed us to estimate that the singlet oxygen lifetime in tissue is less than 0.5 microsecond. Some technical improvements are suggested which would improve detector performance and perhaps make such measurements feasible.  相似文献   

13.
Airway stenosis in childhood is resistant to conventional treatments. Endoscope-assisted photodynamic therapy (PDT) is a potent candidate for the therapeutic modality owing to the easy approach to the tracheal lesion and low degree of invasiveness. The aim of the present study was to examine whether a photosensitizer preferentially accumulates in the lesion of airway stenosis in order to explore the possible applicability of PDT. The tracheal mucosa of rabbits was scraped off, and the rabbits were intravenously administered with Photofrin. The tissue concentration of Photofrin was quantitatively measured by fluorometric analysis. Granulation formation was seen in the mucosa-deprived lesion, causing airway stenosis. Photofrin concentration in the granulation tissue was four-fold higher than that in the intact trachea and 10-fold higher than that in the liver, spleen, skin and muscle. Photofrin preferentially accumulated in the lesion of airway stenosis. A preliminary experiment on PDT using transtracheal illumination showed an amelioration of airway stenosis, resulting in reduction in respiratory stridor.  相似文献   

14.
Although there is evidence that the p53 tumor suppressor plays a role in the response of some human cells to chemotherapy and radiation therapy, its role in the response of human cells to photodynamic therapy (PDT) is less clear. In order to examine the role of p53 in cellular sensitivity to PDT, we have examined the clonogenic survival of normal human fibroblasts that express wild-type p53 and immortalized Li-Fraumeni syndrome (LFS) cells that express only mutant p53, following Photofrin-mediated PDT. The LFS cells were found to be more resistant to PDT compared to normal human fibroblasts. The D37 (LFS cells)/D37 (normal human fibroblasts) was 2.8 +/- 0.3 for seven independent experiments. Although the uptake of Photofrin per cell was 1.6 +/- 0.1-fold greater in normal human fibroblast cells compared to that in LFS cells over the range of Photofrin concentrations employed, PDT treatment at equivalent cellular Photofrin levels also demonstrated an increased resistance for LFS cells compared to normal human fibroblasts. Furthermore, adenovirus-mediated transfer and expression of wild-type p53 in LFS cells resulted in an increased sensitivity to PDT but no change in the uptake of Photofrin per cell. These results suggest a role for p53 in the response of human cells to PDT. Although normal human fibroblasts displayed increased levels of p53 following PDT, we did not detect apoptosis or any marked alteration in the cell cycle of GM38 cells, despite a marked loss of cell viability. In contrast, LFS cells exhibited a prolonged accumulation of cells in G2 phase and underwent apoptosis following PDT at equivalent Photofrin levels. The number of apoptotic LFS cells increased with time after PDT and correlated with the loss of cell viability. A p53-independent induction of apoptosis appears to be an important mechanism contributing to loss of clonogenic survival after PDT in LFS cells, whereas the induction of apoptosis does not appear to be an important mechanism leading to loss of cell survival in the more sensitive normal human fibroblasts following PDT at equivalent cellular Photofrin levels.  相似文献   

15.
Our approach to examine the mechanism(s) of action for photodynamic therapy (PDT) has been via the generation of PDT-resistant cell lines. In this study we used three human cell lines, namely, human colon adenocarcinoma (HT29), human bladder carcinoma and human neuroblastoma. The three photosensitizers used were Photofrin, Nile Blue A and aluminum phthalocyanine tetrasulfonate. The protocol for inducing resistance consisted of repeated in vitro photodynamic treatments with a photosensitizer to the 1-10%-survival level followed by regrowth of single surviving colonies. Varying degrees of resistance were observed. The three induced variants of the HT29 cell line were the most extensively studied. Their ratios of increased survival at the LD90 level range between 1.5- and 2.62-fold more resistant.  相似文献   

16.
Damage Threshold of Normal Rat Brain in Photodynamic Therapy   总被引:4,自引:0,他引:4  
Normal brain tissue response to photodynamic therapy (PDT) must be quantified in order to implement PDT as a treatment of brain neoplasm. We therefore calculated the threshold for PDT-induced tissue necrosis in normal brain using Photofrin (porfimer sodium, Quadralogic Technologies Inc., Vancouver, BC) as the photosensitizer. The absolute light fluence-rate distribution for superficial irradiation and effective attenuation depth were measured in vivo using an invasive optical probe. Photosensitizer uptake in cerebral cortex was measured with chemical extraction and fluorometric analysis. Photodynamic therapy-induced lesion depths at various drug dose levels were measured as a biological end point. The PDT threshold for normal brain necrosis was calculated as in the magnitude of 1016 photons/cm3. Thus normal rat brain is extremely vulnerable to PDT damage. This suggests that extra precautions must be exercised when PDT is used in brain.  相似文献   

17.
The mechanism of tissue damage from photodynamic therapy (PDT) may be cellular, vascular or both, depending on the photosensitising agent and the treatment conditions. Well established photosensitisers like porfimer sodium have an optimum drug light interval of two days and may cause skin photosensitivity lasting several weeks. ATX-S10Na(II) is a new photosensitiser that remains largely in the vasculature after systemic administration and clears from the body within a few hours. The present study looks at the factors controlling the extent of PDT necrosis using ATX-S10Na(II) and correlates these with changes in the circulation after PDT. Normal Wistar rats were sensitised with ATX-S10Na(II), 2 mg/kg. At laparotomy, a laser fibre was positioned just touching the colonic mucosa and 50 J light at 670 nm delivered varying the drug light interval (0.5-24 h) and light delivery regime (100 mW continuous, 20 mW continuous or 100 mW in five fractions). Some animals were killed at three days to document the area of necrosis, others received fluorescein shortly prior to death (from a few minutes to three days after PDT) to outline the zone of PDT induced vascular shutdown. Maximum necrosis was seen with the shortest drug light interval (0.5 h), with no effect by 6 h. Fractionating the light or lowering the power did not increase the necrosis. The area of fluorescein exclusion increased over the first 2 h after PDT (in contrast to the re-perfusion seen with other photosensitisers) and correlated with the area of necrosis. PDT with ATX-S10Na(II) is most effective with a drug light interval of less than one hour. It induces irreversible vascular shutdown that extends after completion of light delivery and which is largely independent of the light delivery regime.  相似文献   

18.
We have demonstrated that lung‐sparing surgery with intraoperative photodynamic therapy (PDT) achieves remarkably extended survival for patients with malignant pleural mesothelioma (MPM). Nevertheless, most patients treated using this approach experience local recurrence, so it is essential to identify ways to enhance tumor response. We previously reported that PDT transiently activates EGFR/STAT3 in lung and ovarian cancer cells and inhibiting EGFR via erlotinib can increase PDT sensitivity. Additionally, we have seen higher EGFR expression associating with worse outcomes after Photofrin‐mediated PDT for MPM, and the extensive desmoplastic reaction associated with MPM influences tumor phenotype and therapeutic response. Since extracellular matrix (ECM) proteins accrued during stroma development can alter EGF signaling within tumors, we have characterized novel 3D models of MPM to determine their response to erlotinib combined with Photofrin‐PDT. Our MPM cell lines formed a range of acinar phenotypes when grown on ECM gels, recapitulating the locally invasive phenotype of MPM in pleura and endothoracic fascia. Using these models, we confirmed that EGFR inhibition increases PDT cytotoxicity. Together with emerging evidence that EGFR inhibition may improve survival of lung cancer patients through immunologic and direct cell killing mechanisms, these results suggest erlotinib‐enhanced PDT may significantly improve outcomes for MPM patients.  相似文献   

19.
20.
It has been suggested that combination high dose rate (HDR) intraluminal brachytherapy and photodynamic therapy (PDT) in nonsmall cell lung cancer (NSCLC) may improve efficacy of treatment, reduce toxicity and enhance quality of life for patients. To provide a cellular basis for this we examined the in vitro sensitivity of MRC5 normal lung fibroblasts and four NSCLC cell lines following HDR radiation, PDT and combined HDR radiation and PDT. HDR radiation was cobalt-60 gamma rays (1.5–1.9 Gy min−1). For PDT treatment, cells were exposed to 2.5 μg mL−1 Photofrin for 18–24 h followed by light exposure (20 mW cm−2). For combined treatment cells were exposed to Photofrin and then either exposed to light and 15–30 min later exposed to HDR radiation or exposed to HDR radiation and 15–30 min later exposed to light. D37 values calculated from clonogenic survival curves indicated a six-fold difference in HDR radiation sensitivity and an eight-fold difference in PDT sensitivity. The effect of combined treatment was not significantly different from an additive effect of the individual treatment modalities for the NSCLC cells, but was significantly less than additive for the MRC5 cells. These results suggest an equivalent tumor cell kill may be possible at reduced systemic effects to patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号