首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
A β-(1→)6)-branched β-(1→)3)-linked glucohexaose (1) and its lauryl glycoside (2), present in many biologically active polysaccharides from traditional herbal medicines such as Ganoderma lucidum, Schizophyllum commune and Lentinus edodes, were highly efficiently synthesized. Coupling of 2,3,4,6-tetra-O-benzoyl-β-D-glucopyranosyl- (1--)3)-2-O-benzoyl-4,6-O-benzylidene-a-D-glucopyranosyl trichloroacetimidate (7) with 3,6-branched acceptors 8 and 12 gave β-(1→)3)-linked pentasaccharides (9) and (13), then via simple chemical transformation 4',6'-OH pentasaccharide acceptors 10 and 14 were obtained. Regio- and stereoselective coupling of 3 with 10 and 14 gave β-(1→)3)-linked hexasaccharides (11) and (15) as the major products. Deprotection of 11 and 15 provided the target sugar 1 and 2. Thus, a new method for the preparation of this kind of compounds was developed.  相似文献   

2.
Microwave irradiation (MWI) has accelerated the synthesis of S‐(2,3,4,6‐tetra‐O‐acetyl‐β‐D‐glucopyranosyl)thiouronium bromide (2a), whose reaction with 2,3,4,6‐tetra‐O‐acetyl‐α‐D‐glucopyranosyl bromide (1a) in the presence of Et3N afforded stereoselectively the acetylated β,β‐1‐thiotrehalose 4a. Similarly, the respective D‐galactopyranosyl 4b and 2‐acetylamino‐2‐deoxy‐D‐glucopyranosyl 4c analog as well as 4,4′‐di‐O‐(2,3,4,6‐tetra‐O‐acetyl‐β‐D‐galactopyranosyl) 4d and 4,4′‐di‐O‐(2,3,4,6‐tetra‐O‐acetyl‐α‐D‐glucopyranosyl) 4e derivatives of 2,2′,3,3′,6,6′‐hexa‐O‐acetyl β,β‐1‐thiotrehalose were prepared.  相似文献   

3.
Abstract

An efficient synthesis of the protected branched trisaccharide (2′S,3′S)‐(7‐O‐benzyl‐6‐O‐chloroacetyl‐3,4‐O‐(2′,3′‐dimethoxybutane‐2′,3′‐diyl)‐2‐Op‐methoxybenzyl‐L‐glycero‐α‐Dmanno‐heptopyranosyl)‐(1 → 3)‐[(2,3,4,6‐tetra‐O‐benzoyl‐β‐D‐glucopyranosyl)‐(1 → 4)]‐7‐O‐acetyl‐1,6‐anhydro‐2‐O‐benzyl‐L‐glycero‐β‐Dmanno‐heptopyranose, which is a key intermediate in the synthesis of inner core structures of Haemophilus and Neisseria LPSs, is described. The heptoses were formed by Grignard reactions using a benzyloxymethyl chloride or a commercial vinyl reagent. The anhydro bridge was formed by treatment of a 6‐OH methyl α‐heptoside precursor with FeCl3. The protecting group pattern allows modifications at the 2‐, 3‐, 4‐, and 6‐positions of the second heptose moiety and also, after acetolysis of the anhydro bridge, elongation at the reducing end, all known alterations found in the bacterial LPSs.  相似文献   

4.
吴自成宁君  孔繁祚 《中国化学》2003,21(12):1655-1660
Lauryl glycoside of β-D-Glcp-(1→3)-[β-D-Glcp-(1→6)-]α-D-Glcp-(1→3)-β-D-Glcp-(1→3)-[β-D-Glcp-(1→6)-]α-D-Glcp-(1→3)-β-D-Glcp-(1→3)-[β-D-Glcp-(1→6)-]β-D-Glcp was synthesized through 3 3 3 strategy. 3-O-Allyl-2,4,6-tri-O-benzoyl-β-D-glucopyranosyl-(1→3)- -[2, 3, 4, 6-tetra-O-benzoyl-β-D-glucopyranosyl-(1→6)-] 1,2-O-isopropylidene-α-D-glucofuranose was used as the key intermediate which was converted to the corresponding trisaccharide donor and acceptor readily.  相似文献   

5.
The synthesis of some new S‐nucleosides of 5‐(4‐pyridyl)‐4‐aryl‐4H‐1,2,4‐triazole‐3‐thiols ( 4a‐n ) is described. Direct glycosylation of ( 4a‐n ) with tetra‐O‐acetyl‐α‐D‐glucopyranosyl bromide in the presence of potassium hydroxide followed by deacetylation using dry ammonia in methanol gave the corresponding 3‐S‐(ñ‐D‐glucopyranosyl)‐5‐(4‐pyridyl)‐4‐aryl‐4H‐1,2,4‐triazoles ( 6a‐n ) in good yields. All the compounds were fully characterized by means of 1HNMR, 13C NMR spectra and elemental analyses. To assist in the interpretation of the spectroscopic data, the crystal structure of 3‐S‐(2′,3′,4′,6′‐tetra‐O‐acetyl‐β‐D‐glucopyranosyl)‐5‐(4‐pyridyl)‐4‐phenyl‐4H‐1,2,4‐triazole ( 5a ) was determined by X‐ray diffraction.  相似文献   

6.
Seven new phenolic glucosides, 2′‐O‐acetylhenryoside ( 1 ), 2′,3′‐di‐O‐acetylhenryoside ( 2 ), 2′,6′‐di‐O‐acetylhenryoside ( 3 ), 2′,3′,6′‐tri‐O‐acetylhenryoside ( 4 ), 2′,3′,4′,6′‐tetra‐O‐acetylhenryoside ( 5 ), 2‐[(2,3‐di‐O‐acetyl‐β‐D ‐glucopyranosyl)oxy]‐6‐hydroxybenzoic acid ( 6 ), and 6‐hydroxy‐2‐[(2,3,4,6‐tetra‐O‐acetyl‐β‐D ‐glucopyranosyl)oxy]benzoic acid ( 7 ), were isolated from the leaves and stems of Viburnum cylindricum, along with 26 known compounds (henryoside=2‐(β‐D ‐glucopyranosyloxy)‐6‐hydroxybenzoic acid [2‐(β‐D ‐glucopyranosyloxy)phenyl]methyl ester). The structures of the new compounds were established on the basis of chemical and spectroscopic evidences.  相似文献   

7.
This article describes detailed structure‐property relationships of 5 regioselectively methylated celluloses and 10 diblock cellulose derivatives with regioselective functionalization patterns: methyl 2,3,6‐tri‐O‐ ( 1 , 236MC), methyl 2,3‐di‐O‐ ( 2 , 23MC), methyl 2,6‐di‐O‐ ( 3 , 26MC), methyl 3‐O‐ ( 4 , 3MC), methyl 6‐O‐methyl‐cellulosides ( 5 , 6MC), methyl β‐D‐glucopyranosyl‐(1→4)‐2,3,6‐tri‐O‐methyl‐ ( 6 , G‐236MC), methyl β‐D‐glucopyranosyl‐(1→4)‐2,3‐di‐O‐methyl‐ ( 7 , G‐23MC), methyl β‐D‐glucopyranosyl‐(1→4)‐2,6‐di‐O‐methyl‐ ( 8 , G‐26MC), methyl β‐D‐glucopyranosyl‐(1→4)‐3‐O‐methyl‐ ( 9 , G‐3MC), methyl β‐D‐glucopyranosyl‐(1→4)‐6‐O‐methyl‐ ( 10 , G‐6MC), methyl β‐D‐glucopyranosyl‐(1→4)‐β‐D‐glucopyranosyl‐(1→4)‐2,3,6‐tri‐O‐methyl‐ ( 11 , GG‐236MC), methyl β‐D‐glucopyranosyl‐(1→4)‐β‐D‐glucopyranosyl‐(1→4)‐2,3‐di‐O‐methyl‐ ( 12 , GG‐23MC), methyl β‐D‐glucopy‐ranosyl‐(1→4)‐β‐D‐glucopyranosyl‐(1→4)‐2,6‐di‐O‐methyl‐ ( 13 , GG‐26MC), methyl β‐D‐glucopyranosyl‐(1→4)‐β‐D‐glucopyranosyl‐(1→4)‐3‐O‐methyl‐ ( 14 , GG‐3MC), and methyl β‐D‐glucopyranosyl‐(1→4)‐β‐D‐glucopyranosyl‐(1→4)‐6‐O‐methyl‐cellulosides ( 15 , GG‐6MC). Surface tension, differential scanning calorimetry, fluorescence, and dynamic light scattering measurements of aqueous solutions of compounds 1 – 15 revealed that there was no relationship between aggregation behaviors and gel formation, gelation occurred only when the hydrophobic environments formed by hydrophobic interactions between the sequences of 2,3,6‐tri‐O‐methyl‐glucopyranosyl units upon heating. The diblock structure consisting of cellobiosyl block and approx. ten 2,3,6‐tri‐O‐methyl‐glucopyranosyl units was of crucial importance for thermoreversible gelation of methylcellulose. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1539–1546, 2011  相似文献   

8.
The chemical study of Sechium mexicanum roots led to the isolation of the two new saponins {3‐O‐β‐D ‐glucopyranosyl (1 → 3)‐β‐D ‐glucopyranosyl‐2β,3β,16α,23‐tetrahydroxyolean‐12‐en‐28‐oic acid 28‐O‐α‐L ‐rhamnopyranosyl‐(1 → 3)‐β‐D ‐xylopyranosyl‐(1 → 4)‐α‐L ‐rhamnopyranosyl‐(1 → 2)‐α‐L ‐arabinopyranoside} (1) and {3‐O‐β‐D ‐glucopyranosyl (1 → 3)‐β‐D ‐glucopyranosyl‐2β,3β,16α,23‐tetrahydroxyolean‐12‐en‐28‐oic acid 28‐O‐α‐L ‐rhamnopyranosyl‐(1 → 3)‐β‐D ‐xylopyranosyl‐(1 → 4)‐[β‐D ‐apiosyl‐(1 → 3)]‐α‐L ‐rhamnopyranosyl‐(1 → 2)‐α‐L ‐arabinopyranoside} (2), together with the known compounds {3‐O‐β‐D ‐glucopyranosyl‐(1 → 3)‐β‐D ‐glucopyranosyl‐2β,3β,6β,16α,23‐pentahydroxyolean‐12‐en‐28‐oic acid 28‐O‐α‐L ‐rhamnopyranosyl‐(1 → 3)‐β‐D ‐xylopyranosyl‐(1 → 4)‐α‐L ‐rhamnopyranosyl‐(1 → 2)‐α‐L ‐arabinopyranoside} (3), tacacosides A1 (4) and B3 (5). The structures of saponins 1 and 2 were elucidated using a combination of 1H and 13C 1D‐NMR, COSY, TOCSY, gHMBC and gHSQC 2D‐NMR, and FABMS of the natural compounds and their peracetylated derivates, as well as by chemical degradation. Compounds 1–3 are the first examples of saponins containing polygalacic and 16‐hydroxyprotobasic acids found in the genus Sechium, while 4 and 5, which had been characterized partially by NMR, are now characterized in detail. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
A concise approach to a Neu5Ac‐α‐2,3‐LacNPhth trisaccharide derivative was developed. First, the regio/stereoselective glycosylation between glycoside donors and glucoNPhth diol acceptors was investigated. It was found that the regioselectivity depends not only on the steric hindrance of the C2‐NPhth group and the C6‐OH protecting group of the glucosamine acceptors, but also on the leaving group and protecting group of the glycoside donors. Under optimized conditions, LacNPhth derivatives were synthesized in up to 92 % yield through a regio/stereoselective glycosylation between peracetylated‐α‐galactopyranosyl trichloroacetimidate and p‐methoxyphenyl 6‐Otert‐butyldiphenylsilyl‐2‐deoxy‐2‐phthalimido‐β‐d ‐glucopyranoside, avoiding the formation of glycosylated orthoesters and anomeric aglycon transfer. Then, the LacNPhth derivative was deacylated and then protected on the primary position by TBDPS to form a LacNPhth polyol acceptor. Finally, the Neu5Ac‐α‐2,3‐LacNPhth derivative was synthesized in 48 % yield through the regio/stereoselective glycosylation between the LacNPhth polyol acceptor and a sialyl phosphite donor. Starting from d ‐glucosamine hydrochloride, the target Neu5Ac‐α‐2,3‐LacNPhth derivative was synthesized in a total yield of 18.5 % over only 10 steps.  相似文献   

10.
Four new ursane‐type saponins, monepalosides C–F, together with a known saponin, mazusaponin II, were isolated from Morina nepalensis var. alba Hand.‐Mazz. Their structures were determined to be 3‐O‐α‐L ‐arabinopyranosyl‐(1 → 3)‐&[alpha;‐L ‐rhamnopyranosyl‐(1 → 2)]‐α‐L ‐arabinopyranosylpomolic acid 28‐O‐β‐D ‐glucopyranosyl‐(1 → 6)‐β‐D ‐glucopyranoside (monepaloside C, 1 ), 3‐O‐α‐L ‐arabinopyranosyl‐(1 → 3)‐&[alpha;‐L ‐rhamnopyranosyl‐(1 → 2)]‐β‐D ‐xylopyranosylpomolic acid 28‐O‐β‐D ‐glucopyranosyl‐(1 → 6)‐β‐D ‐glucopyranoside (monepaloside D, 2 ), 3‐O‐α‐L ‐arabinopyranosyl‐(1 → 3)‐&[beta;‐D ‐glucopyranosy‐(1 → 2)]‐α‐L ‐arabinopyranosylpomolic acid 28‐O‐β‐D ‐glucopyranosyl‐(1 → 6)‐β‐D ‐glucopyranoside (monepaloside E, 3 ) and 3‐O‐β‐D ‐xylopyranosylpomolic acid 28‐O‐β‐D ‐glucopyranoside (monepaloside F, 4 ) on the basis of chemical and spectroscopic evidence. 2D NMR techniques, including 1H–1H COSY, HMQC, 2D HMQC‐TOCSY, HMBC and ROESY, and selective excitation experiments, including SELTOCSY and SELNOESY, were utilized in the structure elucidation and complete assignments of 1H and 13C NMR spectra. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
建立了逐步合成具有重要生物活性的2-脱氧-2-氨基葡萄糖寡糖链的通用方法。采用邻苯二甲酰基保护氨基、硫代苯基为还原末端的离去基团,以氨基葡萄糖为起始原料,几种保护的几丁寡糖及结构类似物被合成:3-O-乙酰基-4,6-O-亚苄基-2-脱氧-2-邻苯二甲酰亚氨基-b-D-吡喃葡萄糖-(1→4)-(3-O-乙酰基-6-O-苄基-2-脱氧-2-邻苯二甲酰亚氨基)-b-D-吡喃葡萄糖甲苷(4)、3-O-乙酰基-4,6-O-亚苄基-2-脱氧-2-邻苯二甲酰亚氨基-b-D-吡喃葡萄糖-(1→4)-(3-O-乙酰基-6-O-苄基-2-脱氧-2-邻苯二甲酰亚氨基-b-D-吡喃葡萄糖)-(1→4)-(3-O-乙酰基-6-O-苄基-2-脱氧-2-邻苯二甲酰亚氨基)-b-D-吡喃葡萄糖甲苷(6)、3-O-乙酰基-4,6-O-亚苄基-2-脱氧-2-邻苯二甲酰亚氨基-b-D-吡喃葡萄糖-(1→3)-(4,6-O-亚苄基-2-脱氧-2-邻苯二甲酰亚氨基)-b-D-吡喃葡萄糖甲苷(8)、3-O-乙酰基-4,6-O-亚苄基-2-脱氧-2-邻苯二甲酰亚氨基-b-D-吡喃葡萄糖-(1→3)-(4,6-O-亚苄基-2-脱氧-2-邻苯二甲酰亚氨基-b-D-吡喃葡萄糖)- (1→3)-(4,6-O-亚苄基-2-脱氧-2-邻苯二甲酰亚氨基)- b-D-吡喃葡萄糖甲苷(10)。所合成化合物通过核磁共振和质谱分析确证了其化学结构。  相似文献   

12.
4-Methoxyphenyl glycoside of β-D-Galp-(1→6)-[α-L-Araf-(1→3)-]β-D-Galp-(1→6)-β-D-Galp-(1→6)-{β-D-Galp-(1→6)-[α-L-Araf-(1→3)-]β-D-Galp-(1→6)-β-D-Galp-(1→6)-}2β-D-Galp-(1→6)-[α-L-Araf-(1→)3)-]β-D-Galp-(1→)6)-β-D-Galp was synthesized with 2,3,4,6-tetra-O-benzoyl-α-D-galactopyranosyl trichloroacetimidate (1), 6-O-acetyl-2,3,4-tri-O-benzoyl-α-D-galactopyranosyl trichloroacetimidate (11), 4-methoxyphenyl 3-O-allyl-2,4-tri-O-benzoyl-β-D-galactopyranoside (2),isopropyl 3-O-allyl-2,4-tri-O-benzoyl--thio-β-D-galactopyranoside (12),4-methoxyphenyl 2,3,4-tri-O-benzoyl-β-D-galactopyranoside (5), and 2,3,5-tri-O-benzoyl-α-L-arabinofuranosyl trichloroacetimidate (8) as the key synthons.  相似文献   

13.
Two new xanthone glycosides and six known compounds were isolated from the roots of Pteris multifida. Based on spectroscopic and chemical methods, the structures of the new compounds were elucidated as 1‐hydroxy‐4,7‐dimethoxy‐8‐(3‐methyl‐2‐butenyl)‐6‐O‐α‐L‐rhamnopyranosyl‐(1→2)‐[β‐D‐glucopyranosyl‐(1→3)]‐β‐D‐glucopyranosylxanthone ( 1 ), and 1,3‐dihydroxy‐7‐methoxy‐8‐(3‐methyl‐2‐butenyl)‐6‐O‐α‐L‐rhamnopyranosyl‐(1 →2)‐[β‐D‐glucopyranosyl‐(1→3)]‐β‐D‐glucopyranosylxanthone ( 2 ), respectively.  相似文献   

14.
Sixteen compounds were isolated from the aerial parts of Solanum incanum L. These compounds included ten flavonoids ( 1‐10 ), chlorogenic acid ( 11 ), adenosine ( 12 ), benzyl‐O‐β‐D‐xylopyranosyl(1→2)‐β‐D‐glucopyranoside ( 13 ), and three phenylalkanoic acids ( 14‐16 ). The structures were determined from their physical and spectral data. Among these compounds, kaempferol 3‐O‐(6″′‐O‐2,5‐dihydroxycinnamoyl)‐β‐D‐glucopyranosyl (1→2) β‐D‐glucopyranoside ( 10 ) was identified as a new compound.  相似文献   

15.
Abstract

Glucuronic acid‐containing di‐ and trisaccharide thioglycoside building blocks, ethyl (benzyl 2,3,4‐tri‐O‐benzyl‐β‐D‐glucopyranosyluronate)‐(1 → 2)‐3‐O‐allyl‐4,6‐di‐O‐benzyl‐1‐thio‐α‐D‐mannopyranoside, ethyl (benzyl 2,3,4‐tri‐O‐benzyl‐β‐D‐glucopyranosyluronate)‐(1 → 2)‐6‐O‐acetyl‐3‐O‐allyl‐4‐O‐benzyl‐1‐thio‐α‐D‐mannopyranoside and ethyl (2,3,4‐tri‐O‐benzyl‐β‐D‐xylopyranosyl)‐(1 → 4)‐[(benzyl 2,3,4‐tri‐O‐benzyl‐β‐D‐glucopyranosyluronate)‐(1 → 2)]‐3‐O‐allyl‐6‐O‐benzyl‐1‐thio‐α‐D‐mannopyranoside, corresponding to repetitive structures in the capsular polysaccharide (CPS) of Cryptococcus neoformans, have been synthesized. The blocks contain an orthogonal allyl group in the 3‐position of the mannose residue to allow formation of the (1 → 3)‐linked mannan backbone of the CPS and benzyl ethers as persistent protecting groups to facilitate access to acetylated target structures. The glucuronic acid moiety was introduced using an acetylated trichloroacetimidate donor and the xylose residue employing the benzoylated bromo sugar to ensure β‐selectivity in the couplings. Exchange to benzyl protecting groups was then performed at the di‐ or trisaccharide level. Assembly of suitable blocks employing DMTST as promoter in diethyl ether then afforded, in high yield and with stereoselectivity, a protected pentasaccharide corresponding to a C. neoformans serotype D CPS structure.  相似文献   

16.
SAEED Aamer 《中国化学》2005,23(6):762-766
A simple synthesis of delphoside, 3-methyl-6-hydroxy-8-O-β-D-glucopyranosyloxy isocoumarin (1), isolated from Delphinium spp. is described. 3,5-Dimethoxyhomophthalic anhydride (2) on treatment with acetyl chloride in the presence of 1,1,3,3-tetramethylguanidine (TMG) and triethyl amine afforded the 6,8-dimethoxy-3-methylisocoumarin (3). Regioselective demethylation of the latter furnished 8-hydroxy-6-methoxy-3-methylisocoumarin (4). Glycosylation with O-(2,3,4,6-tetra-O-acetyl-D-glucopyranosyl)trichloroacetimidate in presence of catalytic amount of boron trifluoride etherate followed by deacetylation using 5% potassium carbonate afforded 3-methyl-6-methoxy-8-O-β-D-glucopyranosyloxyisocoumarin (6) that was finally demethylated to yield delphoside 1.  相似文献   

17.
Three new isoflavone C‐glycosides, along with two known isoflavone O‐glycosides, were isolated from the roots of Pueraria lobata (Willd .) Ohwi . The structures of the new compounds were elucidated as 4′,7‐dihydroxy‐3′‐methoxyisoflavone 8‐C‐[β‐d‐ glucopyranosyl‐(1→6)]‐β‐d‐ glucopyranoside ( 1 ), 4′,7‐dihydroxy‐3′‐methoxyisoflavone 8‐C‐[β‐d‐ apiofuranosyl‐(1→6)]‐β‐d‐ glucopyranoside ( 2 ), and 8‐Cβ‐d‐ glucopyranosyl‐4′,7‐dihydroxy‐3′‐methoxyisoflavone 4′‐Oβ‐d‐ glucopyranoside ( 3 ) on the basis of spectroscopic methods, especially 2D‐NMR and MS analyses. The known compounds isolated were identified by comparison of their physical and spectroscopic data with those reported in the literature.  相似文献   

18.
Two new triterpenoid saponins, gledistside A ( 1 ) and gledistside B ( 2 ), isolated from the fruits of Gledistsia dolavayi Franch., were characterized as the 3,28‐O‐bisdesmoside of echinocystic acid acylated with monoterpene carboxylic acids. On the basis of spectroscopic and chemical evidence, their structures were elucidated as 3‐O‐β‐D ‐xylopyranosyl‐(1→2)‐α‐L ‐arabinopyranosyl‐(1→6)‐β‐D ‐glucopyranosyl‐28‐O‐β‐D ‐xylopyranosyl‐(1→3)‐β‐D ‐xylopyranosyl‐(1→4)‐[β‐D ‐galactopyranosyl‐(1→2)]‐α‐L ‐rhamnopyranosyl‐(1→2)‐{6‐O‐[2,6‐dimethyl‐6(S)‐hydroxy‐2‐trans‐2,7‐octadienoyl]}‐β‐D ‐glucopyranosylechinocystic acid ( 1 ) and 3‐O‐β‐D ‐xylopyranosyl‐(1→2)‐α‐L ‐arabinopyranosyl‐(1→6)‐β‐D ‐glucopyranosyl‐28‐O‐β‐D ‐xylopyranosyl‐(1→3)‐β‐D ‐xylopyranosyl‐(1→4)‐[β‐D ‐galactopyranosyl‐(1→2)]‐α‐L ‐rhamnopyranosyl‐(1→2)‐{6‐O‐[2‐hydroxymethyl‐6‐methyl‐6(S)‐hydroxy‐2‐trans‐2,7‐octadienoyl]}‐β‐D ‐glucopyranosylechinocystic acid ( 2 ). The complete 1H and 13C assignments of saponins 1 and 2 were achieved on the basis of 2D NMR spectra including HMQC‐TOCSY, TOCSY, 1H–1H COSY, HMBC, ROESY and HMQC spectra. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
Sialic acids are essential components of host‐cell surface receptors for infection of influenza virus. To investigate the specific receptor structures recognized by various influenza A viruses, a series of lacto‐ and neolacto‐series ganglioside analogs containing N‐glycolylneuraminic acid (Neu5Gc) have been synthesized. The pentasaccharide structures of Neu5Gc‐α‐(2→3)/(2→6)‐lactotetraose (IV3(6)Neu5GcLcOse) and Neu5Gc‐α‐(2→3)/(2→6)‐neolactotetraose (IV3(6)Neu5GcnLcOse) were constructed by glycosylation of the suitably protected trisaccharide acceptors (2A and 2B) with the Neu5Gc‐α‐(2→3)/(2→6)‐Gal trichloroacetimidate donors (1 and 21), respectively. Transformation of the 2‐(trimethylsilyl)ethyl group at the reducing end in 4, 11, 23, and 30 into the trichloroacetimidate group gave a series of Neu5Gc‐α‐(2→3)/(2→6)‐lacto‐ and neolactotetraose donors (7, 13, 26, and 33), which were coupled with 2‐(tetradecyl)hexadecanol (8), to give the corresponding glycolipids (9, 14, 27, and 34). Finally, the complete removal of the O‐acyl groups and saponification of the methyl ester group gave the desired ganglioside analogs (10, 15, 28, and 35).  相似文献   

20.
From the stem bark of Tetrapleura tetraptera, two new oleanane‐type saponins, tetrapteroside A 3‐O‐{6‐O‐[(2E,6S)‐2,6‐dimethyl‐6‐hydroxyocta‐2,7‐dienoyl]‐β‐D ‐glucopyranosyl‐(1 → 2)‐β‐D ‐glucopyranosyl‐(1 → 3)‐β‐D ‐glucopyranosyl‐(1 → 4)‐[β‐D ‐glucopyranosyl‐(1 → 2)]‐β‐D ‐glucopyranosyl}‐3,27‐dihydroxyoleanolic acid (1), and tetrapteroside B 3‐O‐{ β‐D ‐glucopyranosyl‐(1 → 2)‐6‐O‐[(E)‐feruloyl]‐β‐D ‐glucopyranosyl‐(1 → 3)‐β‐D ‐glucopyranosyl‐(1 → 4)‐[β‐D ‐glucopyranosyl‐(1 → 2)]‐β‐D ‐glucopyranosyl}‐3,27‐dihydroxyoleanolic acid (2), were isolated. Further extractions from the roots led to the isolation of four known oleanane‐type saponins. Their structures were elucidated by the combination of mass spectrometry (MS), one and two‐dimensional NMR experiments. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号