首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The enthalpies of solution of cyclic ethers: 1,4-dioxane, 12-crown-4 (12C4), and 18-crown-6 (18C6) in water–acetone mixtures have been measured within the whole mole fraction range at 298.15 K. Based on the obtained data, the effect of base–acid properties of water–acetone mixtures on the solution enthalpy of cyclic ethers in this mixed solvent has been analyzed. The strong dependence of the enthalpy of solution (solvation) of cyclic ethers on basic properties of mixed solvent has been observed. The effects of carbonyl atom replacement in acetone (ACN) molecule by sulfur atom (DMSO molecule) and base–acid properties of mixed solvent on the solvation process of cyclic ethers have been analyzed.  相似文献   

2.
Crown ethers are preferential solvated by organic solvents in the mixtures of water with formamide, N-methylformamide, acetonitrile, acetone and propan-1-ol. In these mixed solvents the energetic effect of the preferential solvation depends quantitatively on the structural and energetic properties of mixtures. The energetic properties of the mixtures of water with hydrophobic solvents (N,N-dimethylformamide, dimethylsulfoxide, N,N-dimethylacetamide, hexamethylphosphortriamide) counteract the preferential solvation of the crown ether molecules. The effect of the hydrophobic and acid-base properties of the mixture of water with organic solvent on the solvation of 12-crown-4, 15-crown-5, 18-crown-6 and benzo-15-crown-5 ethers was discussed. The solvation enthalpy of one -CH2CH2O- group in water, N,N-dimethylformamide and hexamethylphosphortriamide is equal to −24.21, −16.04 and −15.91 kJ/mol, respectively. The condensed benzene ring with 15-crown-5 ether molecule brings about an increase in the exothermic effect of solvation of the crown ether in the mixtures of water with organic solvent.  相似文献   

3.
1H NMR spectroscopy was used to investigate the stoichiometry and stability of the drug ketamine cation complexes with some crown ethers, such as 15-crown-5 (15C5), aza-15-crown-5 (A15C5), 18-crown-6 (18C6), aza-18-crown-6 (A18C6), diaza-18-crown-6 (DA18C6), dibenzyl-diaza-18-crown-6 (DBzDA18C6) and cryptant [2,2,2] (C222) in acetonitrile (AN), dimethylsulfoxide (DMSO) and methanol (MeOH) at 27 degrees C. In order to evaluate the formation constants of the ketamine cation complexes, the CH3 protons chemical shift (on the nitrogen atom of ketamine) was measured as function of ligand/ketamine mole ratio. The formation constant of resulting complexes were calculated by the computer fitting of chemical shift versus mole ratio data to appropriate equations. A significant chemical shift variation was not observed for 15C5 and 18C6. The stoichiometry of the mono aza and diaza ligands are 1:1 and 1:2 (ligand/ketamine), respectively. In all of the solvents studied, DA18C6 formed more stable complexes than other ligands. The solvent effect on the stability of these complexes is discussed.  相似文献   

4.
The enthalpies of solution of the cyclic ethers 1,4-dioxane, 12-crown-4 and 18-crown-6 in mixtures of ethanol and water have been measured within the whole mole fraction range at T = 298.15 K. The enthalpy of solvation has been calculated. In pure ethanol and pure water, the solvation enthalpy of the investigated cyclic ethers depends linearity on the number of –CH2CH2– groups in the cyclic ether molecules. Based on the analysis of the preferential solvation model proposed by Waghorne, it can be concluded that the 1,4-dioxane, 15C5 and 18C6 molecules are preferentially solvated by water molecules in the range of low water content in these mixtures. The effect of base–acid properties of ethanol–water mixtures on the enthalpy of solution of cyclic ethers in these mixtures has been analyzed. The enthalpy of solution of cyclic ethers correlates with the acidic properties of ethanol–water mixtures in the range of high and medium water content. The results presented are compared with analogous data obtained for the methanol–water and propan-1-ol–water mixtures.  相似文献   

5.
A variety of lariat ethers were employed to solubilize water-soluble cytochrome c in methanol, in which alcohol, ether, ester, amine, and amide functionalities were attached as cation-ligating side arms to 18-crown-6, 15-crown-5, and 12-crown-4 rings. Among these lariat ethers, the alcohol-armed 18-crown-6 derivative offered the highest solubilization efficiency for cytochrome c via supramolecular complexation. The resulting cytochrome c-lariat ether complexes were electrochemically and spectroscopically characterized and confirmed to have redox-active heme structures of 6-coordinate low-spin population in methanol. Some of them catalyzed the oxidation of pinacyanol chloride with hydrogen peroxide in methanol and exhibited higher activities than unmodified cytochrome c and its poly(ethylene glycolated) derivative. Since the supramolecular complexation between lariat ether and cytochrome c includes extremely simple procedures, it provides a facile preparation method of effective biocatalysts working in organic solvents from metalloproteins.  相似文献   

6.
Crystalline complexes of urea and thiourea with crown ethers, have been prepared, viz., 18-crown-6 (18C6), benzo-18-crown-6 (B18C6), dibenzo-18-crown-6 (DB18C6), dicyclohexano-18-crown-6 (DC 18C6) and dibenzo-24-crown-8 (DB24C8). While the complexes of the large ring size crown ether, DB24C8, have high ether to (thio)urea ratios, the stoichiometry of the others lies between one molecule of crown ether and from one to six molecules of (thio)urea. An IR spectral study of the urea and thiourea complexes showed that the behavior of thiourea in these complexes is clearly different from that of urea, indicating the role of sulphur in the interaction of thiourea with crown ethers. The urea and thiourea complexes were classified according to their stoichiometries and their IR spectral behavior into three classes for which credible structures were proposed.  相似文献   

7.
The thermodynamic functions of complex formation of benzo-15-crown-5 ether (B15C5) and sodium cation (Na+) in acetone–water mixtures at 298.15 K have been calculated. The equilibrium constants of B15C5/Na+ complex formation have been determined by conductivity measurements. The enthalpic effect of complex formation has been measured by the calorimetric method. The complexes are enthalpy-stabilized but entropy-destabilized in acetone–water mixtures. The effects of hydrophobic hydration, preferential solvation of B15C5 by a molecule of water and acetone, respectively and the solvation of Na+ on the complex formation processes have been discussed. The calculated thermodynamic functions of B15C5/Na+ complex formation and the effect of benzene ring on the complex formation have been compared with analogous data obtained in dimethylsulfoxide–water mixtures. The effect of carbonyl atom replacement in acetone molecule by sulphur atom (DMSO molecule) on the thermodynamic functions of complex formation has been analysed.  相似文献   

8.
Takeda Y  Ikeo N  Sakata N 《Talanta》1991,38(11):1325-1333
Enthalpy and entropy changes for ion-pair extractions of tetraalkylammonium ions (R(4)N(+)) with picrate anions, overall extractions of s-block metal picrates with 15-crown-5 (15C5) and 18-crown-6 (18C6) and the partition of 15C5 itself were determined between chloroform and water. The distribution behaviour of crown ethers and the extraction process of s-block metal picrates with the crown ethers are discussed in detail on molecular grounds from the thermodynamic point of view. Moreover, enthalpy and entropy changes for ion-pair extractions of 1:1 15C5- and 18C6-s-block metal ion complexes with picrate anions are calculated from these experimental thermodynamic parameters and the literature values for complex-formation reactions of the crown ethers with the s-block metal ions in water. Enthalpy and entropy changes are negative for overall extractions of all the s-block metal picrates with 15C5 and 18C6. The extractions of the metal picrates with 15C5 and 18C6 at 25 degrees are completely enthalpy driven. Plots of thermodynamic parameters for ion-pair extractions of R(4)NA vs. the number of carbon atoms of R(4)N(+) show a linear relationship. From these experimental data, contributions of a methylene group and an ether oxygen atom to the thermodynamic parameters of the ion-pair extraction of R(4)NA and the partition of the crown ethers, respectively, between chloroform and water were obtained. Enthalpy and entropy changes for ion-pair extractions of 15C5- and 18C6-s-block metal picrate complexes were compared with those of R(4)NA. A striking difference in the ion-pair extraction process was found between the crown ether complexes and R(4)NA.  相似文献   

9.
Enthalpy of solution of crown ethers (15-crown-5 and benzo-15-crown-5) in water-acetone mixtures have been measured within the whole range of mole fraction at 298.15 K. The obtained data have been compared with those of the solution enthalpy of both crown ethers in the mixtures of water with dimethyl sulfoxide. The replacement of SO group with CO in the molecule of the organic solvent brings about an increase in the exothermic effect of the solution of 15-crown-5 and benzo-15-crown-5 ethers, especially in the mixtures with a medium water content. The observed effect is connected with the preferential solvation of the molecules of both crown ethers by acetone molecules in the water-acetone mixtures. The process of preferential solvation of 15-crown-5 and benzo-15-crown-5 ethers does not take place in the water-dimethyl sulfoxide mixture.  相似文献   

10.
Liquid-liquid extractive-spectrophotometric studies of sodium ion complexes of 18-crown-6(18C6), dibenzo-18-crown-6(DB18C6), 15-crown-5(15C5), and 12-crown-4(12C4) and anionic dyes [4-(2-pyridylazo)-resorcinol monosodium salt monohydrate (PAR), Eriochrom Black T (EBT), and methyl orange (MOR)] and sodium picrate (PICRAT) as the counter ion are described. The overall extraction equilibrium constants for the 1 : 1 complexes of the above crown ethers with sodium dyes between different organic solvents and water have been determined at 25deg;C. They were conducted in various solvent-water systems maintaining an identical initial cation concentration in water, [M0+]w, and macrocyclic ligand concentration in the organic phase, [L0]org}, so that in all extractions [M0+]w : [L0]org ratios were 1 : 1, 1 : 10, 1 : 20, 1 : 50, and 1 : 62.5. An ion association complex formed between the sodium-crown ether complex ion and a dye anion was extracted into the organic solvent, and then the dye concentration of the separated aqueous phase was measured with an ultraviolet-visible spectrophotometer. PAR was the best associated dye with all crown ethers sodium-dyes and the extracted dye occurs as the ion-pair complex. Methylene chloride was found to be better than other extractive solvents used in this study.  相似文献   

11.
The synthesis of a functionalized crown ether was accomplished in two steps by condensing 3,4-dihydroxybenzaldehyde with bis(2-chloroethyl)ether and subsequent reduction of the reaction product, bis(formylbenzo)-18-crown-6 (4) to a diol (5). Polyurethanes that bear the dibenzo-18-crown-6 moiety in the polymer backbone were synthesized from bis(methylolbenzo)-18-crown-6 (5), a polypropylene glycol, and methylene bis(4-cyclohexyl isocyanate). The resulting polymers were fibrous white solids with glass transitions from ca. 15–120°C, depending on the starting diol composition. The thermomechanical spectra of melt pressed or solvent cast films of several crown-ether-bearing polyurethanes showed evidence of multiphase character. The polymers failed to complex effectively with sodium ions. However, their complexing ability with potassium ion was similar in magnitude to that observed with relatively simple crown ethers.  相似文献   

12.
The IR spectra of the crystalline complexes of 3-and 4-nitrophenol with crown ethers were studied, viz.,18-crown-6 (18C6), benzo-18-crown-6 (B18C6),dibenzo-18-crown-6 (DB18C6), dicyclohexano-18-crown-6 (DC18C6) and dibenzo-24-crown-8 (DB24C8). The spectra of uncomplexed crown ethers showed water absorption bands which indicate the presence of two types of bound water molecules, viz., cavitant water enclosed by the strong ether-cavity field and outer-layer hydrogen-bonded water molecules. Upon complexation with 3- and 4-nitrophenol, the bands attributed to cavitant water disappeared, leaving the outer layer water to act as a bridge between the host crown ether and the guest phenols. The results further showed that of the crown ethers and of the phenols, B18C6 and DC18C6 and 3-nitrophenol, have the strongest interaction. The behaviour of the phenols was explained by the increased contribution of the inductive-moment over the resonance -moment in thecomplexes.  相似文献   

13.
The conductance of acetone and methyl ethyl ketone solutions of tetraphenylborate salts in the presence of homopolymers and styrene copolymers of vinylbenzo-15-crown-5 and vinylbenzo-18-crown-6 was studied, and the results compared with data obtained for crown ethers. Polycations are formed on binding cations to the poly(crown ethers), and the conductance behavior of the polyelectrolytes depends on the nature of the cation-crown complex and the spacing between crown moieties which in turn determines the charge density on the polymer chain. The compositions of the crown-cation complexes were determined for crown ethers. The complex formation constants of sodium and potassium cations to poly(vinylbenzo-18-crown-6) were found to change as more cations bind to the chain. This is not the case for the copolymers where the crown ligands are spaced farther apart. A mixture of poly(vinylbenzo-15-crown-5) and 10?3M potassium tetraphenylborate in methyl ethyl ketone or acetone has a minimum conductance at a crown to cation ratio of 3.0, but the conductance rapidly increases on addition of crown ether. This was used to qualitatively determine the binding efficiency of a series of crown ethers since the rate of increase in the conductance is a measure of the binding ability of the crown ether to the cation.  相似文献   

14.
The hydrogen-bonding networks for seven new binary compounds of dithiooxamide, (NH2CS)2 (dtox) and dithiobiurea (NH2CSNH)2 (dtur) with crown ethers, 18-crown-6 (18C6), 15-crown-5 (15C5), 12-crown-4 (12C4), cis-syn-cis-(DCHA), and cis-anti-cis-(DCHB) isomers of dicyclohexyl-18 -crown-6 are discussed. (15C5.dtox), (18C6.dtur) and (DCHB.dtur) afford one-dimensional hydrogen-bonded polymeric arrays where the components alternate. In (DCHA.2dtox) and (DCHB.2dtox) the similar hydrogen-bonded chains are further interlinked via dtox molecules to generate layered motifs. In (15C5.2dtur) the dtur molecules are self-assembled into layers via N-H...S hydrogen bonds. 15C5 spacers link adjacent layers into a three-dimensional network. In (12C4.dtur) the dtur molecules are arranged in chains. These chains alternate with the crown molecules attached to them through N-H...O hydrogen bonds in such a way that each 12C4 appears to be linked with four dtur molecules and vice versa thus providing a three-dimensional grid.  相似文献   

15.
Allylation of sodium phenoxide in the presence of crown ethers produces a high ratio of O/O + C allylation when conducted in water, phenol, benzene, or diethyl ether. The striking increase in the product ratios is attributed to specific complexation of the crown ethers that facilitate the dissociation of the ion pair aggregate of the sodioderivative in benzene or diethyl ether. The crown ethers may act as a phase transfer catalyst when the reaction is run in water. Furthermore, the O/O + C ratios of the allylation strongly depend on the kind of crown ethers used. To examine their effect the allylation of sodium phenoxide was studied with various crown ethers, such as 18-crown-6, benzo-18-crown-6, benzo-15-crown-5, poly(vinylmonobenzo-15-crown-5), and poly(vinylmono-benzo-18-crown-6), as catalysts. It was found that among these crown ethers poly(vinylmono-benzo-15-crown-5) was the most effective catalyst.  相似文献   

16.
Polymers that contain crown ether moieties at the side chain and are capable of forming rather tough film were synthesized by the polymer reaction of poly(vinyl alcohol) with formyl derivatives of aliphatic crown ethers such as 12-crown-4, 15-crown-5, and 18-crown-6. In the passive transport of alkali metal picrates across the poly(crown ether) membranes the permeation, particularly of alkali metals which tend to form intramolecular sandwich-type complexes with the crown ether rings, was retarded, compared with a poly(vinyl alcohol) membrane. The cation selectivities in the permeation of poly(crown ether) membranes differed significantly from those of poly(vinyl alcohol).  相似文献   

17.
The extraction behavior of perrhenate with crown ethers was studied and methods for the separation and determination of rhenium were developed. The distribution ratio of perrhenate with dicyclohexano-18-crown-6 (DC18C6) increases with increases in the dielectric constant of organic solvents and in the potassium ion concentration of aqueous solution. The molar ratios of crown ether to KReO4 in the extracted species are probably 1:1 for DC18C6, dibenzo-18-crown-6 and 18-crown-6 and 2:1 for benzo-15-crown-5 and 15-crown-5. Microgram amounts of rhenium were satisfactorily separated from large amounts of molbdenum(VI) by extraction with DC18C6 in 1,2-dichloroethane from 2 M potassium hydroxide solution containing tartrate and by back-extraction with sodium phosphate buffer solution after the addition of a twofold volume of hexane to the organic phase. Rhenium was determined by the flow-injection extraction-photometric method with Brilliant Green. Rhenium was satisfactory determined in molybdenite and other ore samples.  相似文献   

18.
Synthesis and metal binding properties of thiolariat ethers, where a sulfide side chain is introduced into a framework of a crown ether, have been performed. Remarkably high Ag(+) selectivity among heavy metal ions was observed in solvent extraction and transport across a liquid membrane using thiolariat ethers with a 15-crown-5 ring as carriers. Thiolariat ethers with a 12-crown-4 or a 18-crown-6 do not exhibit such a high Ag(+) selectivity. The former binds metal ions weakly, and the latter recognizes Pb(2+) as well as Ag(+). The corresponding oxygen analogs, i.e. lariat ethers, do not show Ag(+) selectivity. The Ag(+) binding strength of the sulfoxide and sulfone analogs is much lower than that of thiolariat ethers. Thiolariat ethers with a benzocrown framework containing a sulfide chain at the 4 position of the benzene nucleus showed very low affinity to Ag(+). Extractability and transport ability using various thiolariat ether derivatives strongly suggested that this high Ag(+) selectivity is a result of the synergistic coordination of the ring oxygen and the sulfur atom of the thiolariat ether. NMR chemical shifts of protons and carbons in the proximity of the sulfur atom of the thiolariat ether were changed significantly in accordance with the synergistic coordination described above. 1:1 Complexation between a thiolariat ether and Ag(+) were supported by a Job plot using the chemical shift of the methylene protons adjacent to the sulfur atom.  相似文献   

19.
Interactions of nitrosonium tetrafluoroborate and hexafluorophosphate with 18-crown-6, 15-crown-5, and 12-crown-4 in dichloromethane, acetonitrile, and nitromethane have been probed by a combination of proton magnetic resonance spectroscopy, infrared spectroscopy, and conductance measurements. The stoichiometrics of the crown ether-nitrosonium salt complexes were one mole of 18-crown-6 per mole of nitrosonium salt and two moles of 12-crown-4 per mole of nitrosonium salt in all solvents. For 15-crown-5, the one-to-one stoichiometry observed in acetonitrile and nitromethane changed to two moles of crown ether per mole of nitrosonium salt in dichloromethane. The nature of these complexes is discussed. Treatment of a solution of equimolar nitrosonium hexafluorophosphate and 18-crown-6 in dichloromethane with water produced hydronium hexafluorophosphate-18-crown-6 complex.  相似文献   

20.
Stability constants, free energies, and enthalpies and entropies of the complexation of L-alanine methyl ester hydrochloride (L-Ala-HCl), L-phenylalanine methyl ester hydrochloride (L-Phe-HCl), and valine methyl ester hydrochloride (L-Val-HCl) with 15-crown-5 (15C5), benzo-15-crown-5 (B15C5), 18-crown-6 (18C6), benzo-18-crown-6 (B18C6), dicyclohexano-18-crown-6 (DC18C6), and dicyclohexano-24-crown-8 (DC24C8) in methanol are reported for 20°C. No significant variation in the stability constants and free energies of complexation is observed, indicating that the various crown ethers are poorly selective in binding the amino acids. However, the nature of the crown ether and the amino acid and their pattern of substitution cause a remarkable variation in the enthalpies and entropies of complexation. This indicates a strong enthalpy–entropy compensation effect. The enthalpy–entropy compensation effect for the crown ether complexes of the amino acid methyl ester hydrochlorides reported herein is compared with that of the crown ethers complexes of the amino alcohols and the free amino acid. It is found that the enthalpy–entropy compensation effect holds equally for the three classes of complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号