首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The glassy state of a two‐dimensional (2D) Cd2+ coordination polymer crystal was prepared by a solvent‐free mechanical milling process. The glassy state retains the 2D structure of the crystalline material, albeit with significant distortion, as characterized by synchrotron X‐ray analyses and solid‐state multinuclear NMR spectroscopy. It transforms to its original crystal structure upon heating. Thus, reversible crystal‐to‐glass transformation is possible using our new processes. The glass state displays superior properties compared to the crystalline state; specifically, it shows anhydrous proton conductivity and a dielectric constant two orders of magnitude greater than the crystalline material. It also shows material flexibility and transparency.  相似文献   

2.
A new polycrystalline vapochromic polymorph of the one-dimensional copper bispyrazolate polymer reversibly and selectively absorbs a number of small molecules; the crystal structures of the anhydrous and fully hydrated species, determined by powder diffraction methods, are markedly different despite their simple, fast, and reversible interconversion.  相似文献   

3.
The development of solid‐state proton‐conducting materials with high conductivity that operate under both anhydrous and humidified conditions is currently of great interest in fuel‐cell technology. A 3D metal–organic framework (MOF) with acid–base pairs in its coordination space that efficiently conducts protons under both anhydrous and humid conditions has now been developed. The anhydrous proton conductivity for this MOF is among the highest values that have been reported for MOF materials, whereas its water‐assisted proton conductivity is comparable to that of the organic polymer Nafion, which is currently used for practical applications. Unlike other MOFs, which conduct protons either under anhydrous or humid conditions, this compound should represent a considerable advance in the development of efficient solid‐state proton‐conducting materials that work under both anhydrous and humid conditions.  相似文献   

4.
Sol-gel synthesis of organic-inorganic hybrid materials for planar waveguides and devices has received growing interest due to its low-cost processing and good suitability for doping. Titania is an important optical dopant, but homogeneous incorporation of titania in silica is difficult to be achieved by the conventional sol-gel process (aqueous system) because of the significant difference between the hydrolysis rates of the precursors. In this paper, we report an anhydrous sol-gel process for synthesising titania-doped siloxane polymers. The process consists of a hydrolysis of 3-methacryloxypropyltrimethoxysilane (MPS) with boric acid under anhydrous conditions, and a condensation with dimethyldimethoxysilane (DMDMS), diphenyldimethoxysilane (DPhDMS) and titanium ethoxide (TET). Optical characterisations for the produced titania-doped polymer were performed, and results showed that TET doping is useful for reducing the OH concentration of the synthesised polymer and is also effective for improving the optical quality of spin coatings. DMDMS and DPhDMS are favourable in reducing the birefringence and in increasing the thermostability of the material, and the methacryl groups of MPS are UV-polymerizable, which is useful for low cost fabrication of waveguides by photolithographic process. The results of ellipsometry scanning measurements show that titania is homogeneously incorporated in the hybrid matrix, suggesting that the anhydrous sol-gel process is useful for preparation of UV-sensitive titania-doped siloxane polymers for optical applications.  相似文献   

5.
The electro-optic properties of liquid crystal devices are modified by the presence of a polymer network formed by the exposure to UV light of reactive mesogen molecules dissolved within the liquid crystal host. The effect of the polymer network depends on its density, and knowledge of this through the liquid crystal layer is necessary to understand qualitatively, and to model quantitatively, the electro-optic properties of liquid crystal devices containing polymer networks. Various techniques have been used to study the distribution of the polymer network and these show an increased concentration of the network near the surface closest to the UV light. Evidence is presented that the polymer network distribution becomes more uniform when non-UV absorbing liquid crystals are used.  相似文献   

6.
The electro-optic properties of liquid crystal devices are modified by the presence of a polymer network formed by the exposure to UV light of reactive mesogen molecules dissolved within the liquid crystal host. The effect of the polymer network depends on its density, and knowledge of this through the liquid crystal layer is necessary to understand qualitatively, and to model quantitatively, the electro-optic properties of liquid crystal devices containing polymer networks. Various techniques have been used to study the distribution of the polymer network and these show an increased concentration of the network near the surface closest to the UV light. Evidence is presented that the polymer network distribution becomes more uniform when non-UV absorbing liquid crystals are used.  相似文献   

7.
The first X‐ray crystal structure of an α‐fluoroalcohol is reported. Heptafluorocyclobutanol was obtained in quantitative yield from hexafluorocyclobutanone by HF addition in anhydrous hydrogen fluoride. The compound was characterized by its X‐ray single crystal structure. Heptafluorocyclobutanol readily undergoes hydrolysis to hexafluorocyclobutane‐1,1‐diol, which was also structurally characterized by X‐ray diffraction.  相似文献   

8.
In this paper, we report a novel synthesis of anhydrous 1-hydroxy-2,2,6,6-tetramethyl-piperidine (TEMPO-H). An X-ray crystal structure and full characterization of the compound are included. Compared to hydrated TEMPO-H, its anhydrous form exhibits improved stability and a differing chemical reactivity. The reactions of anhydrous TEMPO-H with a variety of low-valent carbon centres are described. For example, anhydrous TEMPO-H was reacted with 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene (IMes), an unsaturated NHC. Crystals of [CHNC(6)H(2)(CH(3))(3)](2)C···HO(NC(5)H(6)(CH(3))(4)), IMes···TEMPO-H, were isolated and a crystal structure determined. The experimental structure is compared to the results of theoretical calculations on the hydrogen-bonded dimer. Anhydrous TEMPO-H was also reacted with the saturated NHC, 1,3-bis(2,6-diisopropylphenyl)imidazolidin-2-ylidene (SIPr), giving the product [CH(2)Ni-Pr(2)C(6)H(3)](2)CH···O(NC(5)H(6)(CH(3))(4)). In contrast, the reaction of hydrated TEMPO-H with 1,3-bis(2,6-diisopropylphenyl)imidazolidin-2-ylidene gave small amounts of the hydrolysis product, N-(2,6-diisopropylphenyl)-N-[2-(2,6-diisopropylphenylamino)ethyl]formamide. Finally, anhydrous TEMPO-H was reacted with (triphenylphosphoranylidene)ketene to generate Ph(3)PC(H)C(=O)O(NC(5)H(6)(CH(3))(4)). A full characterization of the product, including an X-ray crystal structure, is described.  相似文献   

9.
An attenuated total reflectance (ATR) sample cell has been designed, manufactured and subsequently used for the mid-infrared analysis of hygroscopic samples. This sample cell was installed as a simple drop-in replacement for the cell supplied with our commercially available Harrick Mvp-Pro FTIR–ATR accessory. Calcium chloride, a well-known desiccant that has a propensity to absorb water into its crystal lattice, was selected as non-infrared active substrate to accentuate the efficacy of the cell in preserving the anhydrous state of the sample by straightforward monitoring of the water bands. In contrast, mid-infrared spectra are presented that qualitatively demonstrate the rapid rate at which atmospheric moisture is incorporated into the anhydrous sample when analyzed using the conventional ATR cell assembly.  相似文献   

10.
The existence of three different modifications of anhydrous calcium oxalate is reported since decades. Their crystal structures, however, remained unclear, yet. In the present work the crystal structure of the so‐called β‐modification was revealed by a combination of atomistic computer simulations and Rietveld refinements of the X‐ray powder pattern. No indication for polymorphism was obtained.  相似文献   

11.
Choline chloride forms two lower hydrates — a dihydrate and a monohydrate — with quite unusual properties. The dihydrate is a highly structured liquid salt; the IR spectrum is similar to that of a crystalline framework clathrate hydrate, and there are separate 1H-NMR signals for the cation hydroxyl and water protons. The dihydrate is a crystalline solid at reduced pressure. The crystalline monohydrate only exists at reduced pressure; at atmospheric pressure it disproportionates to liquid dihydrate and anhydrous choline chloride. The anhydrous choline chloride thus formed is a previously unreported crystal modification of choline chloride.  相似文献   

12.
The results of theoretical analysis of the electronic and crystal structural properties and bonding in relation to thermal decomposition process in anhydrous calcium oxalate are presented. The methods used in this analysis—topological analysis of electron density (Bader’s Quantum Theory of Atoms in Molecules approach) obtained from DFT calculations performed by Wien2k package (Full Potential Linearized Augmented Plane Wave Method); bond order model (Cioslowski&Mixon), applied to topological properties of the electron density; as well as Brown’s Bond Valence Model (bonds valences and strength’, and bond and crystal strains, calculated from crystal structure and bonds lengths data) are described. The analysis of the obtained results shows that these methods allow us to explain the way of thermal decomposition process of anhydrous calcium oxalate to calcium carbonate as a decomposition product, and to describe the structural transition taking place during such process (from monoclinic anhydrous CaC2O4 to rhombohedral calcite structure). In the light of the results of our similar calculations performed previously for other anhydrous oxalates (zinc, cadmium silver, cobalt, and mercury) the proposed theoretical approach can be considered as promising and reliable tool, which allow analyzing the properties of the structure and bonding and hence predicting the most probable way of thermal decomposition process for given crystal structure.  相似文献   

13.
张文科 《高分子科学》2014,32(9):1149-1157
Investigation on the folding mode of a single polymer chain in its crystal is significant to the understanding of the mechanism of the fundamental crystallization as well as the engineering of new polymer crystal-based materials. Herein, we use the combined techniques of atomic force microscopy (AFM) imaging and force spectroscopy to pull a single polyethylene oxide (PEO) chain out of its spiral crystal in amyl acetate. From these data, the folding mode of polymer chains in the spiral crystal has been reconstructed. We find that the stems tilt in the typical flat area, leading to the decrease in the apparent lamellar height. While in the area of screw dislocation, the lamellar height gradually increases in the range of several nanometers. These results indicate that the combined techniques present a novel tool to directly unravel the chain folding mode of spiral crystals at single-molecule level.  相似文献   

14.
《Liquid crystals》2000,27(1):1-4
A new polymer dispersed liquid crystal (PDLC) system characterized by easy processing and an open porosity has been elaborated. This PDLC is based on a pre-formed, porous, thin polymer film of a commercially available PVDF-HFP copolymer wetted by the eutectic mixture of cyano bi- and ter-phenyls known as E7 (Merck Ltd, UK). This new process is of interest because of its simplicity, and the fact that there is no risk of intermixing between the liquid crystal and the polymer matrix as occurs in a conventional PDLC. An electric field applied across the thin film results in a change in its transmission, due to the reorientation of the liquid crystal director, as already known for closed porosity PDLCs. The electro-optic properties of this PDLC have been studied and semi-quantitatively interpreted on the basis of the response theory of conventional closed porosity PDLCs.  相似文献   

15.
All the previously reported supramolecular polymers based on crown ether‐based molecular recognition have been prepared in anhydrous organic solvents. This is mainly due to the weakness of crown ether‐based molecular recognition in the presence of water. Here we report a linear supramolecular polymer constructed from a heteroditopic monomer in an aqueous medium driven by crown ether‐based molecular recognition through the introduction of electrostatic attraction. In addition, the reversible transition between the linear supramolecular polymer and oligomers is achieved by adding acid and base. This study realizes the breakthrough of the solvent for supramolecular polymerization driven by crown ether‐based molecular recognition from anhydrous organic solvents to aqueous media. It is helpful for achieving supramolecular polymerization driven by crown ether‐based molecular recognition in a completely aqueous medium.  相似文献   

16.
The heat capacity of poly(methacrylic acid) containing 2.5 wt % water was measured in a vacuum adiabatic calorimeter at temperatures between 80 and 325 K. The heat capacity of anhydrous poly(methacrylic acid) was calculated, and its standard enthalpies of combustion and formation were determined. On the basis of the enthalpy of melting of the “free”-water phase, the limit of water solubility in the polymer was found calorimetrically at 273 K. The temperatures of relaxation transitions (the glass transition and the β and γ transitions) of poly(methacrylic acid) mixtures with water were determined via differential thermal analysis in the region 80–550 K. In addition, the determination of the temperatures of transitions of anhydrous poly(methacrylic acid) was performed via extrapolation to zero water content of the concentration dependences of the relaxation-transition temperatures.  相似文献   

17.
We introduce a new approach to crystal‐packing analysis, based on the study of mutual recognition modes of entire molecules or of molecular moieties, rather than a search for selected atom–atom contacts, and on the study of crystal energy landscapes over many computer‐generated polymorphs, rather than a quest for the one most stable crystal structure. The computational tools for this task are a polymorph generator and the PIXEL density sums method for the calculation of intermolecular energies. From this perspective, the molecular recognition, crystal packing, and solid‐state phase behavior of caffeine and several methylxanthines (purine‐2,6‐diones) have been analyzed. Many possible crystal structures for anhydrous caffeine have been generated by computer simulation, and the most stable among them is a thermodynamic, ordered equivalent of the disordered phase, revealed by powder X‐ray crystallography. Molecular recognition energies between two caffeine molecules or between caffeine and water have been calculated, and the results reveal the largely predominant mode to be the stacking of parallel caffeine molecules, an intermediately favorable caffeine–water interaction, and many other equivalent energy minima for lateral interactions of much less stabilization power. This last indetermination helps to explain why caffeine does not crystallize easily into an ordered anhydrous structure. In contrast, the mono‐ and dimethylxanthines (theophylline, theobromine, and the 1,7‐isomer, for which we present a single‐crystal X‐ray study and a lattice energy landscape) do crystallize in anhydrous form thanks to the formation of lateral hydrogen bonds.  相似文献   

18.
During the last 75 years, crystal structures have been reported for 19 of the 20 directly encoded proteinogenic amino acids in their natural (enantiomerically pure) form. The crystal structure is now reported for the final member of this set: L ‐lysine. As crystalline L ‐lysine has a strong propensity to incorporate water under ambient atmospheric conditions to form a hydrate phase, the pure (non‐hydrate) crystalline phase can be obtained only by dehydration under rigorously anhydrous conditions, resulting in a microcrystalline powder sample. For this reason, modern powder X‐ray diffraction methods have been exploited to determine the crystal structure in this final, elusive case.  相似文献   

19.
We introduce a new approach to crystal-packing analysis, based on the study of mutual recognition modes of entire molecules or of molecular moieties, rather than a search for selected atom-atom contacts, and on the study of crystal energy landscapes over many computer-generated polymorphs, rather than a quest for the one most stable crystal structure. The computational tools for this task are a polymorph generator and the PIXEL density sums method for the calculation of intermolecular energies. From this perspective, the molecular recognition, crystal packing, and solid-state phase behavior of caffeine and several methylxanthines (purine-2,6-diones) have been analyzed. Many possible crystal structures for anhydrous caffeine have been generated by computer simulation, and the most stable among them is a thermodynamic, ordered equivalent of the disordered phase, revealed by powder X-ray crystallography. Molecular recognition energies between two caffeine molecules or between caffeine and water have been calculated, and the results reveal the largely predominant mode to be the stacking of parallel caffeine molecules, an intermediately favorable caffeine-water interaction, and many other equivalent energy minima for lateral interactions of much less stabilization power. This last indetermination helps to explain why caffeine does not crystallize easily into an ordered anhydrous structure. In contrast, the mono- and dimethylxanthines (theophylline, theobromine, and the 1,7-isomer, for which we present a single-crystal X-ray study and a lattice energy landscape) do crystallize in anhydrous form thanks to the formation of lateral hydrogen bonds.  相似文献   

20.
Zinc oxide thin films were prepared using either zinc acetate dihydrate or anhydrous zinc acetate via the sol–gel method. Comparative characterisation of the crystallographical, morphological, optical/spectroscopical and electrical properties of the so-obtained films was performed. The idea of one- (in the case of the anhydrous precursor), and two- (in the other case) stage hydrolysis/condensation was postulated, which was supported by the characterisation results. The film prepared using the anhydrous precursor had a more pronounced c-axis crystal orientation preference, with a larger average crystallite size and more porous morphology. The transparency of this film was significantly lower over the UV/visible region due to its more porous morphology, which also resulted in lower intensity of the ‘near band edge emission’, and higher electrical resistivity. The overall results also suggested that anhydrous zinc acetate could be employed as a precursor for the sol–gel synthesis of zinc oxide thin films, which might have potential advantages in microelectronic and optoelectronic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号