首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1IntroductionCavitationandstrongcavitationnoisewillbecausedonthepropelIerbladeswhenshipnavigateatacertainhighspeed['l'].Thecavitationnoisehasitsspecialacousticscharacter-istics;itsfrequencyspectruminvolvesafrequencyrangefrom5HztolOoKHz,anditslinespectrumcomponentsinlowfrequencyarestable.AccordingtotheMorrismeasurement,thelinespectrumcomponentsinlowfrequencyappearedatthedouble-frequenciesof6.8Hz[3].Itisalsoprovedbyplentyofnationalmeasurementsandanalysisthatshippropellercavitationnoisedirectl…  相似文献   

2.
Octyl β-D-glucopyranoside (OGP) has been reported to completely inhibit cavitation-induced cell lysis in vitro, possibly by quenching critical free-radical effects. In this study, the influence of OGP on cell lysis in a 60 rpm rotating-tube exposure apparatus was assessed. HL-60 cell lysis was estimated with a Coulter Multisizer counter. Cavitation activity from the 2.3 MHz, 30 s duration exposures were monitored at the 1.15 MHz subharmonic. Cavitation nucleation was accomplished by addition of an ultrasound contrast agent, or by using freshly dissolved culture media. For both nucleation methods, exposures were conducted for 0-0.7 MPa peak rarefactional pressure-amplitudes with and without 5 mM OGP, and for 0.5 MPa with 0-5 mM OGP. The addition of OGP to the cell suspension medium generally had little influence on cavitation-induced cell lysis. Exposures with no rotation had reduced subharmonic and lysis for added contrast agent, but essentially no cavitation for the fresh medium. Since the decreases or increases in cell lysis found for added OGP generally were accounted for by concomitant decreases or increases in cavitation activity, the changes in cell lysis could be explained by variation of the mechanical effects of cavitation without invoking a critical role for free-radical effects.  相似文献   

3.
We present an optodynamic measurement of a laser-induced cavitation bubble and its oscillations based on a scanning technique using a laser beam-deflection probe. The deflection of the beam was detected with a fast quadrant photodiode which was built into the optical probe. The applied experimental setup enabled us to carry out one- or two-dimensional scanning of the cavitation bubble, automatic control of the experiment, data acquisition and data processing. Shadow photography was used as a comparative method during the experiments.  相似文献   

4.
The research on the potential of cavitation exploitation is currently an extremely interesting topic. To reduce the costs and time of the cavitation reactor optimization, nowadays, experimental optimization is supplemented and even replaced using computational fluid dynamics (CFD). This is a very inviting opportunity for many developers, yet we find that all too often researchers with non-engineering background treat this “new” tool too simplistic, what leads to many misinterpretations and consequent poor engineering.The present paper serves as an example of how complex the flow features, even in the very simplest geometry, can be, and how much effort needs to be put into details of numerical simulation to set a good starting point for further optimization of cavitation reactors. Finally, it provides guidelines for the researchers, who are not experts in computational fluid dynamics, to obtain reliable and repeatable results of cavitation simulations.  相似文献   

5.
Many models have been established to study the evolution of the bubble dynamics and chemical kinetics within a single acoustic cavitation bubble during its oscillation. The content of the bubble is a gas medium that generates the evolution of a chemical mechanism governed by the internal bubble conditions. These gases are described by a state equation, linking the pressure to the volume, temperature and species amounts, and influencing simultaneously the dynamical, the thermal and the mass variation in the cavitation bubble. The choice of the state equation to apply has then a non-neglected effect on the obtained results. In this paper, a comparative study was conducted through two numerical models based on the same assumptions and the same scheme of chemical reactions, except that the first one uses the ideal gas equation to describe the state of the species, while the second one uses the Van der Waals equation. It was found that though the dynamic of the bubble is not widely affected, the pressure and temperature range are significantly increased when passing from an ideal gas model to a real one. The amounts of chemical products are consequently raised to approximately the double. This observation was more significant for temperature and pressure at low frequency and high acoustic amplitude, while it is noticed that passing from ideal gas based approach to the Van der Waals one increases the free radicals amount mainly under high frequencies. When taking the results of the second model as reference, the relative difference between both results reaches about 60% for maximum attained temperature and 100% for both pressure and free radicals production.  相似文献   

6.
Knowledge of the kinetics of gas bubble formation and evolution under cavitation conditions in molten alloys is important for the control casting defects such as porosity and dissolved hydrogen. Using in situ synchrotron X-ray radiography, we studied the dynamic behaviour of ultrasonic cavitation gas bubbles in a molten Al–10 wt% Cu alloy. The size distribution, average radius and growth rate of cavitation gas bubbles were quantified under an acoustic intensity of 800 W/cm2 and a maximum acoustic pressure of 4.5 MPa (45 atm). Bubbles exhibited a log-normal size distribution with an average radius of 15.3 ± 0.5 μm. Under applied sonication conditions the growth rate of bubble radius, R(t), followed a power law with a form of R(t) = αtβ, and α = 0.0021 & β = 0.89. The observed tendencies were discussed in relation to bubble growth mechanisms of Al alloy melts.  相似文献   

7.
《Ultrasonics sonochemistry》2014,21(4):1544-1548
Ultrasonic cavitation erosion experiments were performed on Ti–6Al–4V alloys samples in annealed, nitrided and nitrided and subsequently heat treated state. The protective oxide layer formed as a result of annealing and heat treatment after nitriding is eliminated after less than 30 min cavitation time, while the nitride layer lasts up to 90 min cavitation time. Once the protective layer is removed, the cavitation process develops by grain boundary erosion, leading to the expulsion of grains from the surface. The gas nitrided Ti–6Al–4V alloy, forming a TixN surface layer, proved to be a better solution to improve the cavitation erosion resistance, compared to the annealed and nitrided and heat treated state, respectively. The analysis of the mean depth of erosion rate at 165 min cavitation time showed an improvement of the cavitation erosion resistance of the nitrided samples of up to 77% higher compared to the one of the annealed samples.  相似文献   

8.
When an intense femtosecond laser is focused in a cell culture medium, shock wave, stress wave, and cavitation bubble are generated at the laser focal point. Cell–cell adhesion can be broken at the cellular level by the impacts of these factors. We have applied this breaking of the adhesion to an estimation of the cell–cell adhesion strength. In this application, it is important to identify which of these factors is the dominant factor that breaks the adhesion. Here we investigated this issue using streptavidin-coated microbeads adhering to a biotin-coated substrate as a mimic of the cell–cell adhesion. The results indicated that the break was induced mainly by the stress wave, not by the impact of the cavitation bubble.  相似文献   

9.
《Physics letters. A》2002,299(4):418-421
Energy losses of a beam of fast ions of tritium passing throw the gas of deuterium exceed the power produced from fusion. Even with additional power from a corresponding “blanket” surrounding gas of deuterium (so-called “hybrid fusion”) this process is not favorable. To improve situation we propose an arrangement for high-efficiency recuperation of the lost energy using the process of “cylindrical cavitation”. There is a heat cycle in this process in which working gas contained in the cylindrical cavity in rotating liquid is compressed and expanded adiabatically with collapsing and expansion of this cavity. The procedure of injection of recuperated heat into working gas using the so-called process of “controlled turbulence” is considered. Such recuperation, in principle, can make the process of energy receiving from hybrid fusion favorable.  相似文献   

10.
This paper presented an ultrasound line-by-line scanning method of spatial–temporal active cavitation mapping applicable in a liquid or liquid filled tissue cavities exposed by high-intensity focused ultrasound (HIFU). Scattered signals from cavitation bubbles were obtained in a scan line immediately after one HIFU exposure, and then there was a waiting time of 2 s long enough to make the liquid back to the original state. As this pattern extended, an image was built up by sequentially measuring a series of such lines. The acquisition of the beamformed radiofrequency (RF) signals for a scan line was synchronized with HIFU exposure. The duration of HIFU exposure, as well as the delay of the interrogating pulse relative to the moment while HIFU was turned off, could vary from microseconds to seconds. The feasibility of this method was demonstrated in tap-water and a tap-water filled cavity in the tissue-mimicking gelatin–agar phantom as capable of observing temporal evolutions of cavitation bubble cloud with temporal resolution of several microseconds, lateral and axial resolution of 0.50 mm and 0.29 mm respectively. The dissolution process of cavitation bubble cloud and spatial distribution affected by cavitation previously generated were also investigated. Although the application is limited by the requirement for a gassy fluid (e.g. tap water, etc.) that allows replenishment of nuclei between HIFU exposures, the technique may be a useful tool in spatial–temporal cavitation mapping for HIFU with high precision and resolution, providing a reference for clinical therapy.  相似文献   

11.
The high-velocity oxygen-fuel (HVOF) spraying process was used to fabricate conventional WC–10Co–4Cr coatings and FeCrSiBMn amorphous/nanocrystalline coatings. The synergistic effect of cavitation erosion and corrosion of both coatings was investigated. The results showed that the WC–10Co–4Cr coating had better cavitation erosion–corrosion resistance than the FeCrSiBMn coating in 3.5 wt.% NaCl solution. After eroded for 30 h, the volume loss rate of the WC–10Co–4Cr coating was about 2/5 that of the FeCrSiBMn coating. In the total cumulative volume loss rate under cavitation erosion–corrosion condition, the pure cavitation erosion played a key role for both coatings, and the total contribution of pure corrosion and erosion-induced corrosion of the WC–10Co–4Cr coating was larger than that of the FeCrSiBMn coating. Mechanical effect was the main factor for cavitation erosion–corrosion behavior of both coatings.  相似文献   

12.
In the present investigation, the operating efficiency of a bench-top air-driven microfluidizer has been compared to that of a bench-top high power ultrasound horn in the production of pharmaceutical grade nanoemulsions using aspirin as a model drug. The influence of important process variables as well as the pre-homogenization and drug loading on the resultant mean droplet diameter and size distribution of emulsion droplets was studied in an oil-in-water nanoemulsion incorporated with a model drug aspirin. Results obtained show that both the emulsification methods were capable of producing very fine nanoemulsions containing aspirin with the minimum droplet size ranging from 150 to 170 nm. In case of using the microfluidizer, it has been observed that the size of the emulsion droplets obtained was almost independent of the applied microfluidization pressure (200–600 bar) and the number of passes (up to 10 passes) while the pre-homogenization and drug loading had a marginal effect in increasing the droplet size. Whereas, in the case of ultrasound emulsification, the droplet size was generally decreased with an increase in sonication amplitude (50–70%) and period of sonication but the resultant emulsion was found to be dependent on the pre-homogenization and drug loading. The STEM microscopic observations illustrated that the optimized formulations obtained using ultrasound cavitation technique are comparable to microfluidized emulsions. These comparative results demonstrated that ultrasound cavitation is a relatively energy-efficient yet promising method of pharmaceutical nanoemulsions as compared to microfluidizer although the means used to generate the nanoemulsions are different.  相似文献   

13.
The physics and chemistry of nonlinearly oscillating acoustic cavitation bubbles are strongly influenced by the dissolved gas in the surrounding liquid. Changing the gas alters among others the luminescence spectrum, and the radical production of the collapsing bubbles. An overview of experiments with various gas types and concentration described in literature is given and is compared to mechanisms that lead to the observed changes in luminescence spectra and radical production. The dissolved gas type changes the bubble adiabatic ratio, thermal conductivity, and the liquid surface tension, and consequently the hot spot temperature. The gas can also participate in chemical reactions, which can enhance radical production or luminescence of a cavitation bubble. With this knowledge, the gas content in cavitation can be tailored to obtain the desired output.  相似文献   

14.
A numerical scheme for simulating the acoustic and hydrodynamic cavitation was developed. Bubble instantaneous radius was obtained using Gilmore equation which considered the compressibility of the liquid. A uniform temperature was assumed for the inside gas during the collapse. Radiation heat transfer inside the bubble and the heat conduction to the bubble was considered. The numerical code was validated with the experimental data and a good correspondence was observed. The dynamics of hydrofoil cavitation bubble were also investigated. It was concluded that the thermal radiation heat transfer rate strongly depended on the cavitation number, initial bubble radius and hydrofoil angle of attack.  相似文献   

15.
In the field of sonochemistry, many processes are made possible by the generation of cavitation. This article is about closed loop control of ultrasound assisted processes with the aim of controlling the intensity of cavitation-based sonochemical processes. This is the basis for a new research field which the authors call “sonomechatronics”. In order to apply closed loop control, a so called self-sensing technique is applied, which uses the ultrasound transducer’s electrical signals to gain information about cavitation activity. Experiments are conducted to find out if this self-sensing technique is capable of determining the state and intensity of acoustic cavitation. A distinct frequency component in the transducer’s current signal is found to be a good indicator for the onset and termination of transient cavitation. Measurements show that, depending on the boundary conditions, the onset and termination of transient cavitation occur at different thresholds, with the onset occurring at a higher value in most cases. This known hysteresis effect offers the additional possibility of achieving an energetic optimization by controlling cavitation generation.Using the cavitation indicator for the implementation of a double set point closed loop control, the mean driving current was reduced by approximately 15% compared to the value needed to exceed the transient cavitation threshold. The results presented show a great potential for the field of sonomechatronics. Nevertheless, further investigations are necessary in order to design application-specific sonomechatronic processes.  相似文献   

16.
The aim of this study is to investigate the mechanism of the erosion process induced by 1.2 MHz pulsed high-intensity focused ultrasound (pulsed HIFU). By using Sonochemiluminescence (SCL) photograph, the initiation and maintenance of active cavitation were observed. In order to understand the role of both inertial cavitation and stable cavitation, a passive cavitation detection (PCD) transducer was used. Since the exposure variables of HIFU are important in the controlled ultrasound tissue erosion, the influence of pulse length (PL) and duty cycle (DC, Ton:Toff) has been examined. The results of tissue hole, SCL observation and acoustic detection revealed that the erosion was highly efficient for shorter PL. For higher DCs, the area of SCL increased with increasing PL. For lower DCs, the area of SCL increased with increasing PL from 10 to 20 μs and then kept constant. For all PLs, the intensity of SCL decreased with lower DC. For all DCs, the intensity of SCL per unit area (the ratio of SCL intensity to SCL area) also decreased with increasing PL from 10 to 80 μs, which suggested that the higher the intensity of SCL is, the higher the efficiency of tissue erosion is. At DC of 1:10, the position of the maximum pixel in SCL pictures was distant from the tissue–fluid interface with the increasing PL because of shielding effect. By the comparison of inertial cavitation dose (ICD) and the stable cavitation dose (SCD), the mechanisms associated with inertial cavitation are very likely to be the key factor of the erosion process.  相似文献   

17.
The formation of free radicals (?)OH and (?)H in a naturallyair-saturated aqueous solution exposed to therapeutic CW ultrasound at afrequency of 820 kHz has been confirmed by using spin trapping 5,5-dimethyl-1-pyrroline-1-oxide(DMPO)and electron spin resonance(ESR)technique.It is suggested that these radicals are formed due tothe high temperature and pressure produced by the ultrasonic transientcavitation.The transient cavitation threshold is found at 0.537-0.632W/cm~2 under a sonication time of 3 minutes.With increasing soundintensity the yield of free radicals (?)OH raises rapidly at the intensityranging from 1—2W/cm~2,and no longer increase is observed at above3W/cm~2.The sound intensity (I) dependence of the yield of (?)OH (D)can be approximately described by a regression equation:D=8.1(I~(1/2) -(I_c)~(1/2))~(1/2), where I_c=0.667W/cm~2 .Under a fixing soundintensity the yield of OH increases monotonously with the sonicationtime.  相似文献   

18.
The present work addresses the correlation of bisphenol A (BPA) degradation by hydrodynamic cavitation with the fluid mechanical properties of the cavitating jet in the reactor. The effects of inlet pressure and two orifices were investigated. The fluid mechanics conditions during the reaction were evaluated by optical measurements to determine the jet length, bubble volume, number of bubbles, and bubble size distribution. In addition, chemiluminescence of luminol is used to localize chemically active bubbles due to the generation of hydroxyl radicals in the reactor chamber. The correlation between the rate constants of BPA degradation and the mechanical properties of the liquid is discussed. Here, linear dependencies between the degradation of BPA and the volume expansion of the bubble volume and chemiluminescence are found, allowing prediction of the rate constants and the hydroxyl radicals generated. BPA degradation of 50% was achieved in 30 min with the 1.7 mm nozzle at 25 bar. However, the 1 mm nozzle has been demonstrated to be more energetically efficient, achieving 10% degradation with 30% less power per 100 passes. There is a tendency for the number of small bubbles in the reactor to increase with smaller nozzle and increasing pressure difference.  相似文献   

19.
For the first time Fe–Pt alloy included carbon nanocapsules were synthesized by an electric plasma discharge in an ultrasonic cavitation field of liquid ethanol. This contrasts the extensively used chemical synthesis methods which produce uncoated Fe–Pt alloy nanoparticles. We proposed that the as-synthesized Fe–Pt alloy included carbon nanocapsules are potentially useful in biomedical applications. Thereby an aim of this work was to coat the Fe–Pt alloy nanoparticles by graphite shells using plasma discharge in liquid ethanol and to study the structure and magnetic properties of the carbon encapsulated Fe–Pt alloy nanoparticles. The core–shell structured nanoparticles were characterized by transmission electron microscopy and X-ray diffraction. These methods revealed the presence of a disordered face-centered cubic (fcc) structure (γFe, Pt) in the cores of the as-synthesized carbon nanocapsules. The as-synthesized carbon nanocapsules showed the soft magnetic character at room temperature. These carbon nanocapsules may provide a new approach in the transport and delivery of anticancer drugs.  相似文献   

20.
Liquid lead-bismuth eutectic alloy (LBE) is applied in the Accelerator Driven transmutation System (ADS) as the high-power spallation neutron targets and coolant. A 19.2 kHz ultrasonic device was deployed in liquid LBE at 550 °C to induce short and long period cavitation erosion damage on the surface of weld joint, SEM and Atomic force microscopy (AFM) were used to map out the surface properties, and Energy Dispersive Spectrometer (EDS) was applied to the qualitative and quantitative analysis of elements in the micro region of the surface. The erosion mechanism for how the cavitation erosion evolved by studying the element changes, their morphology evolution, the surface hardness and the roughness evolution, was proposed. The results showed that the pits, caters and cracks appeared gradually on the erode surface after a period of cavitation. The surface roughness increased along with exposure time. Work hardening by the bubbles impact in the incubation stage strengthened the cavitation resistance efficiently. The dissolution and oxidation corrosion and cavitation erosion that simultaneously happened in liquid LBE accelerated corrosion-erosion process, and these two processes combined to cause more serious damage on the material surface. Contrast to the performance of weld metal, base metal exhibited a much better cavitation resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号