首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chloranthus oldhamii Solms (CO) is a folk medicine for treating infection and arthritis pain but its pharmacological activity and bioactive compounds remain mostly uncharacterized. In this study, the anti-inflammatory compounds of C. oldhamii were identified using an LPS-stimulated, NF-κB-responsive RAW 264.7 macrophage reporter line. Three diterpenoid compounds, 3α-hydroxy-ent-abieta-8,11,13-triene (CO-9), 3α, 7β-dihydroxy-ent-abieta-8,11,13-triene (CO-10), and decandrin B (CO-15) were found to inhibit NF-κB activity at nontoxic concentrations. Moreover, CO-9 and CO-10 suppressed the expression of IL-6 and TNF-α in LPS-stimulated RAW 264.7 cells. The inhibitory effect of CO-9 on TNF-α and IL-6 expression was further demonstrated using LPS-treated bone marrow-derived macrophages. Furthermore, CO-9, CO-10, and CO-15 suppressed LPS-triggered COX-2 expression and downstream PGE2 production in RAW 264.7 cells. CO-9 and CO-10 also reduced LPS-triggered iNOS expression and nitrogen oxide production in RAW 264.7 cells. The anti-inflammatory mechanism of the most effective compound, CO-9, was further investigated. CO-9 attenuated LPS-induced NF-κB activation by reducing the phosphorylation of IKKα/β (Ser176/180), IκBα (Ser32), and p65 (Ser534). Conversely, CO-9 did not affect the LPS-induced activation of MAPK signaling pathways. In summary, this study revealed new anti-inflammatory diterpenoid compounds from C. oldhamii and demonstrated that the IKK-mediated NK-κB pathway is the major target of these compounds.  相似文献   

2.
In search of anti-inflammatory compounds, novel scaffolds containing isonicotinoyl motif were synthesized via an efficient strategy. The compounds were screened for their in vitro anti-inflammatory activity. Remarkably high activities were observed for isonicotinates 5–6 and 8a–8b. The compound 5 exhibits an exceptional IC50 value (1.42 ± 0.1 µg/mL) with 95.9% inhibition at 25 µg/mL, which is eight folds better than the standard drug ibuprofen (11.2 ± 1.9 µg/mL). To gain an insight into the mode of action of anti-inflammatory compounds, molecular docking studies were also performed. Decisively, further development and fine tuning of these isonicotinates based scaffolds for the treatment of various aberrations is still a wide-open field of research.  相似文献   

3.
A variety of amide derivatives of (6-chloro-2,3-dihydro-1H-inden-1-yl)acetic acid were synthesized and screened for their anti-inflammatory and related biological activities. These compounds were found to be longer acting and showed residual activity exceeding that of standard indomethacin. The studies with SKF-525A, a standard hepatic microsomal enzyme inhibitor showed that probably the test compound per se is the active species. The compound 6y showed best activity profile with ED30 of 6.45 mg/kg however this compound was found to be toxic at 100 mg/kg p.o. Though these compounds exhibited appreciable analgesic and antipyretic activities but they failed to prevent the development of secondary inflammation in adjuvant induced arthritis assay. The compound 6x showed 94% inhibition of acetic acid induced writhing. Studies showed that antagonism of TNF-alpha is not possibly involved in the mechanism of action of these compounds. However these compounds were found to have only mild ulcerogenic potential at the tested dose level of 100 mg/kg p.o. in comparison to indomethacin.  相似文献   

4.
The syntheses and anti-inflammatory activities of novel thieno[2,3-b]pyridine and thieno[2,3-b:5,4-c']-dipyridine derivatives are described. These compounds were designed by modification of the quinoline template of a new type of disease-modifying antirheumatic drug (DMARD), TAK-603, and prepared by the Friedl?nder reaction as a key reaction. Their anti-inflammatory effects were evaluated using an adjuvant arthritis rat model. Most of the compounds which included a diethylamino moiety in the side chain had potent anti-inflammatory effect. In particular, ethyl 2-(diethylaminomethyl)-4-(3,4-dimethoxyphenyl)thieno[2,3-b:5,4-c'] dipyridine-3-carboxylate (21) exhibited more potent activity than TAK-603.  相似文献   

5.
In view of potent antimicrobial and anti-inflammatory activities exhibited by 5-substituted imidazolones, a variety of novel imidazolone analogs 3a-l were synthesized by the condensation of different substituted oxazolones 1 with various aromatic amines 2. All the synthesized compounds were screened for in vitro activities against a panel of Gram-positive and Gram-negative bacteria and the yeast-like pathogenic fungus Candida albicans. Several analogs produced good or moderate activities particularly against the tested Gram-positive bacteria Micrococcus luteus and Gram-negative bacteria Pseudomonas aeruginosa and. Meanwhile, compounds 3b and 3c displayed marked antifungal activity against C. albicans. In addition, the in vivo anti-inflammatory activity of the synthesized compounds was determined using the carrageenin-induced paw oedema method in rats. Two of 5-substituted imidazolone derivatives, 3k and 3d show good anti-inflammatory activity. The structures of all the newly synthesized compounds were elucidated using IR, 1H NMR and 13C NMR.  相似文献   

6.
NSAIDs constitute a heterogeneous class of pharmacological agents widely prescribed for the treatment of inflammation, pain and edema, as well as osteoarthritis, rheumatoid arthritis and musculoskeletal disorders. This class of drugs has proved efficacious on account of their analgesic, anti-pyretic and anti-inflammatory activities, but gastrointestinal toxicity exists as the biggest problem associated with their chronic use. Many attempts have been made to structurally modify conventional NSAIDs as selective COX-2 inhibitors based on the old and still prevalent common belief that selective inhibition of COX-2 would provide safer NSAIDs. The present work thus focused on the synthesis of amide derivatives of one of the conventional non-selective NSAID, meclofenamic acid utilizing the one pot procedure involving a selective agent, bis (2-oxo-3-oxazolidinyl) phosphonic chloride. The synthesized compounds were tested for their in vivo inflammatory activity using carrageenan rat paw edema assay, and were subsequently docked on COX-2 PDB code 4COX to have better insights into their mechanism of action. The amide derivative with N-4-methoxybenzyl moiety (TSN4) proved to have anti-inflammatory potential (72.8%) better than meclofenamic acid (56.75%). This compound also docked with the highest dock score among the synthesized compounds and was found to have both hydrogen bonding with Arg120 and Tyr355 and hydrophobic interactions with Val349, Leu352, Ser353, Tyr385, Trp387, Met522, Val523, Ala527 and Ser530. N-4-methoxybenzyl amide derivative (TSN4) followed by benzyl amide derivative (TSN1) of meclofenamic acid were identified as potential anti-inflammatory compounds in both in vivo and in silico studies.  相似文献   

7.
Reactive oxygen species (ROS) performs a pivotal function as a signaling mediator in receptor-mediated signaling. However, the sources of ROS in this signaling have yet to be determined, but may include lipoxygenases (LOXs) and NADPH oxidase. The stimulation of lymphoid cells with TNF-alpha, IL-1beta, and LPS resulted in significant ROS production and NF-kappaB activation. Intriguingly, these responses were markedly abolished via treatment with the LOXs inhibitor nordihydroguaiaretic acid (NDGA). We further examined in vivo anti-inflammatory effects of NDGA in allergic airway inflammation. Both intraperitoneal and intravenous NDGA administration attenuated ovalbumin (OVA)-induced influx into the lungs of total leukocytes, as well as IL-4, IL-5, IL-13, and TNF-alpha levels. NDGA also significantly reduced serum levels of OVA-specific IgE and suppressed OVA-induced airway hyperresponsiveness to inhaled methacholine. The results of our histological studies and flow cytometric analyses showed that NDGA inhibits OVA-induced lung inflammation and the infiltration of CD11b+ macrophages into the lung. Collectively, our findings indicate that LOXs performs an essential function in pro-inflammatory signaling via the regulation of ROS regulation, and also that the inhibition of LOXs activity may have therapeutic potential with regard to the treatment of allergic airway inflammation.  相似文献   

8.
The synthesis of some novel alkyl/aryl substituted tertiary alcohols was accomplished in two steps. The synthetic route involves preparation of Grignard reagents by treating alkyl/aryl bromides with magnesium turnings in dry ether. Then substituted chalcones were reacted with the Grignard reagents to afford alkyl/aryl substituted tertiary alcohols 1-10. The structures of the synthesized compounds were assigned on the basis of FT-IR, 1H-NMR, 13C-NMR and mass spectroscopic data. The in vivo anti-inflammatory activity of the synthesized compounds was evaluated using the carrageenan-induced hind paw edema method and was compared with that of ibuprofen. Some of the newly synthesized compounds showed promising anti-inflammatory activity. The tertiary alcohols 1-10 were also screened for antibacterial activity against ten bacterial strains using seven Gram-positive and three Gram-negative bacteria and for antifungal activity against Aspergillus Flavus, Aspergillus Niger and Aspergillus pterus. Tertiary alcohols 1-10 were found to exhibit good to excellent antimicrobial activities compared to levofloxacin and fluconazole used as standard drugs.  相似文献   

9.
Tomatoes are widely consumed, however, studies on tomato seeds are limited. In this study, we isolated 11 compounds including saponins and flavonol glycosides from tomato seeds and evaluated their effects on epidermal hydration. Among the isolated compounds, tomato seed saponins (10 µM) significantly increased the mRNA expression of proteins related to epidermal hydration, including filaggrin, involucrin, and enzymes for ceramide synthesis, by 1.32- to 1.91-fold compared with the control in HaCaT cells. Tomato seed saponins (10 µM) also decreased transepidermal water loss by 7 to 13 g/m2·h in the reconstructed human epidermal keratinization (RHEK) models. Quantitative analysis of the ceramide content in the stratum corneum (SC) revealed that lycoperoside H (1–10 µM) is a promising candidate to stimulate ceramide synthesis via the upregulation of ceramide synthase-3, glucosylceramide synthase, and β-glucocerebrosidase, which led to an increase in the total SC ceramides (approximately 1.5-fold) in concert with ceramide (NP) (approximately 2-fold) in the RHEK models. Evaluation of the anti-inflammatory and anti-allergic effects of lycoperoside H demonstrated that lycoperoside H is suggested to act as a partial agonist of the glucocorticoid receptor and exhibits anti-inflammatory effects (10 mg/kg in animal test). These findings indicate that lycoperoside H can improve epidermal dehydration and suppress inflammation by increasing SC ceramide and steroidal anti-inflammatory activity.  相似文献   

10.
11.
In this study we propose a virtual screening strategy based on the generation of a pharmacophore hypothesis, followed by an in silico evaluation of some ADME-TOX properties with the aim to apply it to the hit finding process and, specifically, to characterize new chemical entities with potential to control inflammatory processes mediated by T lymphocytes such as multiple sclerosis, systemic lupus erithematosus or rheumatoid arthritis. As a result, three compounds with completely novel scaffolds were selected as final hits for future hit-to-lead optimization due to their anti-inflammatory profile. The biological results showed that the selected compounds increased the intracellular cAMP levels and inhibited cell proliferation in T lymphocytes. Moreover, two of these compounds were able to increase the production of IL-4, an immunoregulatory cytokine involved in the selective deviation of T helper (Th) immune response Th type 2 (Th2), which has been proved to have anti-inflammatory properties in several animal models for autoimmune pathologies as multiple sclerosis or rheumatoid arthritis. Thus our pharmacological strategy has shown to be useful to find molecules with biological activity to control immune responses involved in many inflammatory disorders. Such promising data suggested that this in silico strategy might be useful as hit finding process for future drug development.  相似文献   

12.
Cao F  Shao H  Li Q  Li J  Li W  Li C 《Natural product research》2012,26(11):1038-1044
The anti-inflammatory activity and the mechanism of action of Gentiana striata Maxim. has been investigated. The most active phase, the ethyl acetate extract of Gentiana striata Maxim. (EGS), displayed potent inhibitory activity on feet oedema of rheumatoid arthritis (RA) inflicted rats. This anti-inflammatory activity might be partly based on the notable reduction of prostaglandin E2 (PGE?) and nitric oxide (NO) levels. Six further compounds isolated from EGS have previously been reported as having anti-inflammatory activity.  相似文献   

13.
A novel class of styryl sulfones were designed and synthesized as CAPE derivatives by our work team, which showed a multi-target neuroprotective effect, including antioxidative and anti-neuroinflammatory properties. However, the underlying mechanisms remain unclear. In the present study, the anti-Parkinson’s disease (PD) activity of 10 novel styryl sulfone compounds was screened by the cell viability test and the NO inhibition test in vitro. It was found that 4d exhibited the highest activity against PD among them. In a MPTP-induced mouse model of PD, the biological activity of 4d was validated through suppressing dopamine neurotoxicity, microglial activation, and astrocytes activation. With compound 4d, we conducted the mechanistic studies about anti-inflammatory responses through inhibition of p38 phosphorylation to protect dopaminergic neurons, and antioxidant effects through promoting nuclear factor erythroid 2-related factor 2 (Nrf2). The results revealed that 4d could significantly inhibit 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/1-methyl-4-phenylpyridinium (MPTP/MPP+)-induced p38 mitogen-activated protein kinase (MAPK) activation in both in vitro and in vivo PD models, thus inhibiting the NF-κB-mediated neuroinflammation-related apoptosis pathway. Simultaneously, it could promote Nrf2 nuclear transfer, and upregulate the expression of antioxidant phase II detoxification enzymes HO-1 and GCLC, and then reduce oxidative damage.  相似文献   

14.
Four new gallate derivatives—ornusgallate A, ent-cornusgallate A, cornusgallate B and C (1a, 1b, 2, 3)—were isolated from the wine-processed fruit of Cornus officinalis. Among them, 1a and 1b are new natural compounds with novel skeletons. Their chemical structures were elucidated by comprehensive spectroscopy methods including NMR, IR, HRESIMS, UV, ECD spectra and single-crystal X-ray diffraction analysis. The in vitro anti-inflammatory activities of all compounds were assayed in RAW 264.7 cells by assessing LPS-induced NO production. As the result, all compounds exhibited anti-inflammatory activities at attested concentrations. Among the tested compounds, compound 2 exhibited the strongest anti- inflammatory activity.  相似文献   

15.
2-Arylquinoxalines were synthesized by the condensation of α-chloroacetophenone and o-phenylenediamine (1:1) using pyridine as catalyst in THF at room temperature. All the compounds were characterized by spectral data. Furthermore, these are screened for in vivo anti-inflammatory activity by carrageenan induced rat hind paw edema methods all the compounds were displayed significant anti-inflammatory activity. The title compounds were also shown good antibacterial and antifungal activity.  相似文献   

16.
Stevioside, a diterpenoid glycoside, is widely used as a natural sweetener; meanwhile, it has been proven to possess various pharmacological properties as well. However, until now there were no comprehensive evaluations focused on the anti-inflammatory activity of stevioside. Thus, the anti-inflammatory activities of stevioside, both in macrophages (RAW 264.7 cells, THP-1 cells, and mouse peritoneal macrophages) and in mice, were extensively investigated for the potential application of stevioside as a novel anti-inflammatory agent. The results showed that stevioside was capable of down-regulating lipopolysaccharide (LPS)-induced expression and production of pro-inflammatory cytokines and mediators in macrophages from different sources, such as IL-6, TNF-α, IL-1β, iNOS/NO, COX2, and HMGB1, whereas it up-regulated the anti-inflammatory cytokines IL-10 and TGF-β1. Further investigation showed that stevioside could activate the AMPK -mediated inhibition of IRF5 and NF-κB pathways. Similarly, in mice with LPS-induced lethal shock, stevioside inhibited release of pro-inflammatory factors, enhanced production of IL-10, and increased the survival rate of mice. More importantly, stevioside was also shown to activate AMPK in the periphery blood mononuclear cells of mice. Together, these results indicated that stevioside could significantly attenuate LPS-induced inflammatory responses both in vitro and in vivo through regulating several signaling pathways. These findings further strengthened the evidence that stevioside may be developed into a therapeutic agent against inflammatory diseases.  相似文献   

17.
以选择性环氧化酶-2(COX-2)抑制剂Celecoxib为先导,根据其构效关系和分子模拟研究结果,应用生物电子等排原理等药物设计方法,设计合成了19个结构全新的二芳基取代-1,2,4-三唑类衍生物,其结构经IR,1HNMR,MS和元素分析确证.初步的药理试验结果表明,部分目标化合物具有一定的抗炎活性.  相似文献   

18.
In order to obtain novel topically applied anti-inflammatory compounds containing an inexpensive anti-oxidative moiety without chirality, we synthesized compound 2c derivatives having a di-tert-butylphenol moiety, and evaluated by topical administration their anti-inflammatory potentials on picryl chloride-(PC) induced contact hypersensitivity reaction (CHR) in mice. In the course of our structure-activity relationship (SAR) studies on the pyrimidine or the anti-oxidative moiety and the linker between them, the most potent compounds (10, 11) were obtained by the insertion of a C2 unit in compound 2c. The potencies of these compounds were 2-fold greater than that of 1. Compounds 10 and 11 were considered to be useful lead compounds having inexpensive anti-oxidative moieties without chirality.  相似文献   

19.
Luteolin (LT), present in most plants, has potent anti-inflammatory properties both in vitro and in vivo. Furthermore, some of its derivatives, such as luteolin-7-O-glucoside, also exhibit anti-inflammatory activity. However, the molecular mechanisms underlying luteolin-3′-O-phosphate (LTP)-mediated immune regulation are not fully understood. In this paper, we compared the anti-inflammatory properties of LT and LTP and analyzed their molecular mechanisms of action; we obtained LTP via the biorenovation of LT. We investigated the anti-inflammatory activities of LT and LTP in macrophage RAW 264.7 cells. We confirmed from previously reported literature that LT inhibits the production of nitric oxide and prostaglandin E2, as well as the expression of inducible NO synthetase and cyclooxygenase-2. In addition, expressions of inflammatory genes and mediators, such as tumor necrosis factor-α, interleukin-6, and interleukin-1β, were suppressed. LTP showed anti-inflammatory activity similar to LT, but better anti-inflammatory activity in all the experiments, while also inhibiting mitogen-activated protein kinase and nuclear factor-kappa B more effectively than LT. At a concentration of 10 μM, LTP showed differences of 2.1 to 44.5% in the activity compared to LT; it also showed higher anti-inflammatory activity. Our findings suggest that LTP has stronger anti-inflammatory activity than LT.  相似文献   

20.
Based on the core structure of Felbinac drug, three series (4ad, 5ad and 6an) of five membered heterocyclic derivatives containing three heteroatoms were designed and synthesized starting from Felbinac. In the rational design of the target molecules, the biphenyl ring along with the methylene bridge of felbinac was retained while the carboxyl group was substituted with biologically active substituents like 1,2,4-triazole, 1,3,4-thiadiazole and 1,3,4-oxadiazole, with an intent to obtain novel, better and safer anti-inflammatory agents with improved efficacy. The prepared molecules were then investigated for their anti-inflammatory, ulcerogenicity and analgesic activity in experimental animals. The tested compounds exhibited varying degrees of inflammatory activity (25.21–72.87%), analgesic activity (27.50–65.24%) and severity index on gastric mucosa in the range of 0.20–0.80 in comparison to positive control felbinac (62.44%, 68.70% and 1.5, respectively). Among all the prepared compounds, 2-(biphenyl-4-ylmethyl)-5-(4-chlorophenyl)-1,3,4-oxadiazole (6c) emerged as the most potent NSAID compound exhibiting the highest anti-inflammatory activity (72.87% inhibition) and analgesic activity (65.24%) along with the least severity index on gastric mucosa (0.20). Further, molecular docking on cyclooxygenase and in silico ADME-Toxicity prediction studies also supported the experimental biological results and indicated that 6c has a potential to serve as a drug candidate or lead compound for developing novel anti-inflammatory and analgesic therapeutic agent(s) with minimum toxicity on gastric mucosa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号