首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crystallization mechanism of a high-strength lithium disilicate glass-ceramic in the SiO(2)-Li(2)O-P(2)O(5)-Al(2)O(3)-K(2)O-(ZrO(2)) system, used as restorative dentistry material, has been examined on the basis of quantitative (29)Si magic angle spinning (MAS) and (29)Si{(7)Li} rotational echo double resonance (REDOR) NMR spectroscopy. Crystallization occurs in two stages: near 650 °C a significant fraction of the Q(3) units disproportionates into crystalline Li(2)SiO(3) and Q(4) units. Upon further annealing of this glass-ceramic to 850 °C the crystalline Li(2)SiO(3) phase reacts with the Q(4) units of the softened residual glass matrix, resulting in the crystallization of Li(2)Si(2)O(5). The NMR experiments provide detailed insight into the spatial distribution of the lithium ions suggesting the absence of lithium ion clustering in the residual glassy component of the final glass-ceramic. (31)P MAS-NMR spectra indicate that phosphate acts as a lithium ion scavenger, resulting in the predominant formation of orthophosphate (P(0)) and some pyrophosphate (P(1)) groups. Crystallization of Li(2)SiO(3) occurs concomitantly with the formation of a highly disordered Li(3)PO(4) phase as evidenced from strong linebroadening effects in the (31)P MAS-NMR spectra. Well-crystallized Li(3)PO(4) is only formed at annealing conditions resulting in the formation of crystalline lithium disilicate. These results argue against an epitaxial nucleation process previously proposed in the literature and rather suggest that the nucleation of both lithium metasilicate and lithium disilicate starts at the phase boundary between the disordered lithium phosphate phase and the glass matrix.  相似文献   

2.
Structural signatures: The analysis of Si-Si and Si-Li connectivities by solid-state NMR spectroscopy allows the different types of silicon clusters to be discriminated in the model lithium silicide compound Li(12)Si(7) (see picture, Si clusters red and blue, Li ions gray). The results provide new NMR spectroscopic strategies with which to differentiate and study the structures formed in silicon-based electrode materials.  相似文献   

3.
The lithium-rich silicide Li4Pt3Si was synthesised from the elements by high-temperature synthesis in a sealed niobium ampoule. Its structure was refined on the basis of single-crystal X-ray diffraction data: R32, a = 693.7(2), c = 1627.1(4) pm, wR2 = 0.0762, 525 F2 values and 21 variables. The striking structural motifs of the Li4Pt3Si structure are silicon atoms with a slightly distorted trigonal prismatic platinum coordination with short Si–Pt distances (238–246 pm). Always two trigonal prisms are condensed via a common Pt3 triangle, and these double units built up a three-dimensional network by condensation via common corners. The channels left by this prismatic network are filled by two crystallographically independent lithium sites in a 3:1 ratio. The single crystal X-ray data were fully confirmed by neutron powder diffraction and 7Li magic-angle spinning (MAS)–nuclear magnetic resonance (NMR) results. The two distinct lithium sites are well differentiated by their 7Li isotropic chemical shift and nuclear electric quadrupolar interaction parameters. MAS-NMR spectra reveal signal coalescence effects above 300 K, indicating chemical exchange between the lithium sites on the millisecond timescale. The spectra can be simulated with a simple two-site exchange model. From the resulting temperature-dependent correlation times, an activation energy of 50 kJ/mol is extracted.  相似文献   

4.
《Solid State Sciences》2012,14(3):367-374
The ternary silicide La2Li2Si3 was synthesized from the elements in a sealed niobium tube. La2Li2Si3 was characterized by powder and single crystal X-ray diffraction: Ce2Li2Ge3 type, Cmcm, a = 450.03(8), b = 1880.3(4), c = 689.6(1) pm, wR2 = 0.0178, 597 F2 values, and 26 parameters. The La2Li2Si3 structure contains two crystallographically independent silicon sites, both in slightly distorted trigonal prismatic coordination. The Si1 atoms are located in condensed La6 prisms and form cis–trans chains (two-bonded silicon) with Si1–Si1 distances at 238 and 239 pm, indicating single bond character. The Si2 atoms are isolated within La2Li4 prisms. La2Li2Si3 might be formally considered as an electron precise Zintl phase with an electron partition (2La3+)(2Li+)(2Si12–)(Si24–). Electronic structure calculations show a trend in this direction based on a charge density analysis with large electron localization around the Si1–Si1 chains. The compound is found weakly metallic with chemical bonding reminiscent of LaSi and additional features brought in by Li and Si2. High resolution solid state 7Li and 29Si MAS-NMR spectra are in agreement with the crystal structural information, however, the 29Si resonance shifts observed suggest strong Knight shift contributions, at variance with the Zintl concept. Variable temperature solid state 7Li spectra indicate the absence of motional narrowing on the kHz timescale within the temperature range 300K < T < 400 K.  相似文献   

5.
Different Li(4)SiO(4) solid solutions containing aluminum (Li(4+x)(Si(1-x)Al(x))O(4)) or vanadium (Li(4-x)(Si(1-x)V(x))O(4)) were prepared by solid state reactions. Samples were characterized by X-ray diffraction and solid state nuclear magnetic resonance. Then, samples were tested as CO(2) captors. Characterization results show that both, aluminum and vanadium ions, occupy silicon sites into the Li(4)SiO(4) lattice. Thus, the dissolution of aluminum is compensated by Li(1+) interstitials, while the dissolution of vanadium leads to lithium vacancies formation. Finally, the CO(2) capture evaluation shows that the aluminum presence into the Li(4)SiO(4) structure highly improves the CO(2) chemisorption, and on the contrary, vanadium addition inhibits it. The differences observed between the CO(2) chemisorption processes are mainly correlated to the different lithium secondary phases produced in each case and their corresponding diffusion properties.  相似文献   

6.
An investigation into the substitution effects in Li15Si4, which is discussed as metastable phase that forms during electrochemical charging and discharging cycles in silicon anode materials, is presented. The novel partial substitution of lithium by magnesium and zinc is reported and the results are compared to those obtained for aluminum substitution. The new lithium silicides Li14MgSi4 ( 1 ) and Li14.05Zn0.95Si4 ( 2 ) were synthesized by high‐temperature reactions and their crystal structures were determined from single‐crystal data. The magnetic properties and thermodynamic stabilities were investigated and compared with those of Li14.25Al0.75Si4 ( 3 ). The substitution of a small amount of Li in metastable Li15Si4 for more electron‐rich metals, such as Mg, Zn, or Al, leads to a vast increase in the thermodynamic stability of the resulting ternary compounds. The 6,7Li NMR chemical shift and spin relaxation time T1‐NMR spectroscopy behavior at low temperatures indicate an increasing contribution of the conduction electrons to these NMR spectroscopy parameters in the series for 1 – 3 . However, the increasing thermal stability of the new ternary phases is accompanied by a decrease in Li diffusivity, with 2 exhibiting the lowest activation energy for Li mobility with values of 56, 60, and 62 kJ mol?1 for 2 , Li14.25Al0.75Si14, and 1 , respectively. The influence of the metastable property of Li15Si4 on NMR spectroscopy experiments is highlighted.  相似文献   

7.
7Li and 13C solid-state MAS NMR spectra of three lithium cuprates with known X-ray structures--lithium([12]crown-4)2 dimethyl and diphenyl cuprate (1,2) and lithium(thf)4-[tris(trimethylsilyl) methyl]2 cuprate (3)--have been measured and analysed with respect to the quadrupolar coupling constants of lithium-7, chi(7Li), and the asymmetry parameters of the quadrupolar interactions, eta(7Li), as well as the 6, 7Li and 13C chemical shifts. The chi(7Li) values of 23, 30, and 18 kHz for 1, 2 and 3, respectively, are in line with the high symmetry around the lithium nucleus in the solvent-separated structures and may be used as reference data for this structural motif. Calculations based on charges derived from ab initio 6-31 G* HF computations using the point charge model (PCM) and the program GAMESS support the experimental findings.  相似文献   

8.
The reaction between {(Me(3)Si)(2)CH}PCl(2) (4) and one equivalent of either [C(6)H(4)-2-NMe(2)]Li or [2-C(5)H(4)N]ZnCl, followed by in situ reduction with LiAlH(4) gives the secondary phosphanes {(Me(3)Si)(2)CH}(C(6)H(4)-2-NMe(2))PH (5) and {(Me(3)Si)(2)CH}(2-C(5)H(4)N)PH (6) in good yields as colourless oils. Metalation of 5 with Bu(n)Li in THF gives the lithium phosphanide [[{(Me(3)Si)(2)CH}(C(6)H(4)-2-NMe(2))P]Li(THF)(2)] (7), which undergoes metathesis with either NaOBu(t) or KOBu(t) to give the heavier alkali metal derivatives [[{(Me(3)Si)(2)CH}(C(6)H(4)-2-NMe(2))P]Na(tmeda)] (8) and [[{(Me(3)Si)(2)CH}(C(6)H(4)-2-NMe(2))P]K(pmdeta)] (9) after recrystallization in the presence of the corresponding amine co-ligand [tmeda = N,N,N',N'-tetramethylethylenediamine, pmdeta = N,N,N',N',N'-pentamethyldiethylenetriamine]. The pyridyl-functionalized phosphane 6 undergoes deprotonation on treatment with Bu(n)Li to give a red oil corresponding to the lithium compound [{(Me(3)Si)(2)CH}(2-C(5)H(4)N)P]Li (10) which could not be crystallized. Treatment of this oil with NaOBu(t) gives the sodium derivative [{[{(Me(3)Si)(2)CH}(2-C(5)H(4)N)P]Na}(2) x (Et(2)O)](2) (11), whilst treatment of with KOBu(t), followed by recrystallization in the presence of pmdeta gives the complex [[{(Me(3)Si)(2)CH}(2-C(5)H(4)N)P]K(pmdeta)](2) (12). Compounds 5-12 have been characterised by (1)H, (13)C{(1)H} and (31)P{(1)H} NMR spectroscopy and elemental analyses; compounds 7-9, and 12 have additionally been characterised by X-ray crystallography. Compounds 7-9 crystallize as discrete monomers, whereas 11 crystallizes as an unusual dimer of dimers and 12 crystallizes as a dimer with bridging pyridyl-phosphanide ligands.  相似文献   

9.
Lithium mobility in LiM(2)(PO(4))(3) compounds, M = Ge and Sn, has been investigated by (7)Li Nuclear Magnetic Resonance (NMR) spectroscopy, and deduced information compared with that reported previously in Ti, Zr and Hf members of the series in the temperature range 100-500 K. From the analysis of (7)Li NMR quadrupole interactions (C(Q) and η parameters), spin-spin T(2)(-1) and spin-lattice T(1)(-1) relaxation rates, structural sites occupancy and mobility of lithium have been deduced. Below 250 K, Li ions are preferentially located at M(1) sites in rhombohedral phases, but occupy intermediate M(12) sites between M(1) and M(2) sites in triclinic ones. In high-temperature rhombohedral phases, a superionic state is achieved when residence times at M(1) and M(12) sites become similar and correlation effects on Li motion decrease. This state can be obtained by large order-disorder transformations in rhombohedral phases or by sharp first order transitions in triclinic ones. The presence of two relaxation mechanisms in T(1)(-1) plots of rhombohedral phases has been associated with departures of conductivity from the Arrhenius behavior. Long term mobility of lithium is discussed in terms of the cation vacancy distribution along conduction paths.  相似文献   

10.
A theoretical investigation on small silicon-doped lithium clusters Li(n)Si with n = 1-8, in both neutral and cationic states is performed using the high accuracy CCSD(T)/complete basis set (CBS) method. Location of the global minima is carried out using a stochastic search method and the growth pattern of the clusters emerges as follows: (i) the species Li(n)Si with n ≤ 6 are formed by directly binding one Li to a Si of the smaller cluster Li(n-1)Si, (ii) the structures tend to have an as high as possible symmetry and to maximize the coordination number of silicon. The first three-dimensional global minimum is found for Li(4)Si, and (iii) for Li(7)Si and Li(8)Si, the global minima are formed by capping Li atoms on triangular faces of Li(6)Si (O(h)). A maximum coordination number of silicon is found to be 6 for the global minima, and structures with higher coordination of silicon exist but are less stable. Heats of formation at 0 K (Δ(f)H(0)) and 298 K (Δ(f)H(298)), average binding energies (E(b)), adiabatic (AIE) and vertical (VIE) ionization energies, dissociation energies (D(e)), and second-order difference in total energy (Δ(2)E) of the clusters in both neutral and cationic states are calculated from the CCSD(T)/CBS energies and used to evaluate the relative stability of clusters. The species Li(4)Si, Li(6)Si, and Li(5)Si(+) are the more stable systems with large HOMO-LUMO gaps, E(b), and Δ(2)E. Their enhanced stability can be rationalized using a modified phenomenological shell model, which includes the effects of additional factors such as geometrical symmetry and coordination number of the dopant. The new model is subsequently applied with consistency to other impure clusters Li(n)X with X = B, Al, C, Si, Ge, and Sn.  相似文献   

11.
A comparative analysis of 6,7Li NMR spectra is performed for the samples of monoclinic lithium titanate obtained at different synthesis temperatures. In the 7Li NMR spectra three lines are found, which differ in quadrupole splitting frequencies v Q and according to ab initio EFG calculations are assigned to three crystallographic sites of lithium: Li1 (v Q ~ 27 kHz); Li2 (v Q ~ 59 kHz); Li3 (v Q ~ 6 kHz). The dynamics of lithium ions is studied in a wide temperature range from 300 K to 900 K. It is found that the narrowing of 7Li NMR spectra as a result of thermally activated diffusion of lithium ions in the low-temperature Li2TiO3 sample is observed at a higher temperature in comparison with a sample of high-temperature lithium titanate. Based on the analysis of 6Li NMR spectra it is assumed that there is mixed occupancy of lithium and titanium sites in the corresponding layers of the crystal structure of low-temperature lithium titanate, which hinders lithium ion transfer over regular crystallographic sites.  相似文献   

12.
Lithiation and delithiation of nanosilicon anodes of 100–200 nm diameter have been probed by ex situ solid-state high-resolution 7Li nuclear magnetic resonance (NMR) and transmission electron microscopy (TEM) methods. Samples were charged within pouch cells up to capacities of 1,500 mAh/g at 0.1 C, and subsequently discharged at the same rate. The NMR spectra reveal important quantitative information on the local lithium environments during the various stages of the charging/discharging process. The TEM experiments show that the electrochemical lithiation of nanosilicon particles results in core-shell materials, consisting of LixSi shells surrounding a core of residual silicon. The NMR spectra yield approximate Li/Si ratios of the lithium silicides present in the shells, based on the distinct local environments of the various types of 7Li nuclei present. The combination of NMR with TEM gives important quantitative conclusions about the nature of the electrochemical lithiation process: Following the initial formation of the solid electrolyte interphase layer, which accounts for an irreversible capacity of 240 mAh/g, lithium silicide environments with intermediate Li concentrations (Li12Si7, Li7Si3, and Li13Si4) are formed at the 500 to 1,000 mAh/g range during the charging process. At a certain penetration depth, further lithiation does not progress any further toward the interior of the silicon particles but rather leads to the formation of increasing amounts of the lithium-richest silicide, Li15Si4-type environments. Delithiation does not result in the reappearance of the intermediate-stage phases but rather only changes the amount of Li15Si4 present, indicating no microscopic reversibility. Based on these results, a detailed quantitative model of nanophase composition versus penetration depth has been developed. The results indicate the power and potential of solid-state NMR spectroscopy for elucidating the charging/discharging mechanism of nano-Si anodes.  相似文献   

13.
The mechanism of Li-ion transport in the garnet Li5La3Nb2O12   总被引:2,自引:0,他引:2  
We present a detailed study on the exact location and dynamics of Li ions in the garnet-type material Li(5)La(3)Nb(2)O(12) employing advanced solid state NMR strategies. Applying temperature-dependent (7)Li-NMR, (6)Li-MAS-NMR, (6)Li-{(7)Li}-CPMAS-NMR, (6)Li-{(7)Li}-CPMAS-REDOR-NMR as well as 2D-(6)Li-{(7)Li}-CPMAS-Exchange-NMR spectroscopy, we were able to quantify the distribution of the Li cations among the various possible sites within the garnet-type structure and to identify intrinsic details of Li migration. The results indicate a sensitive dependence of the distribution of Li cations among the tetrahedral and octahedral sites on the temperature of the final annealing process. This distribution profoundly affects the mobility of the Li cations within the garnet-type framework structure. Extended Li mobility at ambient temperature is only possible if the majority of the Li cations is accommodated in the octahedral sites, as observed for the sample annealed at 900 degrees C. Octahedrally-coordinated Li cations could be identified as the mobile Li species, whereas the tetrahedral sites seem to act as a trap for the Li cations, rendering the tetrahedrally-coordinated Li cations immobile on the time scale of the NMR experiments.  相似文献   

14.
The title compound, lithium aluminium silicide (15/3/6), crystallizes in the hexagonal centrosymmetric space group P63/m. The three‐dimensional structure of this ternary compound may be depicted as two interpenetrating lattices, namely a graphite‐like Li3Al3Si6 layer and a distorted diamond‐like lithium lattice. As is commonly found for LiAl alloys, the Li and Al atoms are found to share some crystallographic sites. The diamond‐like lattice is built up of Li cations, and the graphite‐like anionic layer is composed of Si, Al and Li atoms in which Si and Al are covalently bonded [Si—Al = 2.4672 (4) Å].  相似文献   

15.
研究了用功能材料Li2Mg2Si4O10F2 (LHT)、H2Mn8O16•1.4H2O (CRYMO)和Li1.3Ti1.7Al0.3(PO4)3 (LTAP)分别去除高浓度氯化锂水溶液中的杂质Fe3+、K+和Na+.实验结果表明,这几种功能材料分别对溶液中的杂质Fe3+、K+和Na+有很高的选择性,除杂效果明显.分析和研究了这几种功能材料在高浓度氯化锂水溶液中分别与Fe3+、K+和Na+的交换行为.结果表明,在高浓度氯化锂溶液中这几种功能材料与杂质交换的动力学行为可近似用JMAK方程描述.  相似文献   

16.
We present the synthesis, crystal structure, hardness, IR/Raman and UV/Vis spectra, and FP-LAPW calculations of the electronic structure of Li(2)B(12)Si(2), the first ternary compound in the system Li/B/Si. Yellow, transparent single crystals were synthesized from the elements in tin as solvent at 1500 degrees C in h-BN crucibles in arc-welded Ta ampoules. Li(2)B(12)Si(2) crystallizes orthorhombic in the space group Cmce (no. 64) with a=6.1060(6), b=10.9794(14), c=8.4050(8) A, and Z=4. The crystal structure is characterized by a covalent network of B(12) icosahedra connected by Si atoms and Li atoms located in interstitial spaces. The structure is closely related to that of MgB(12)Si(2) and fulfils the electron-counting rules of Wade and Longuet-Higgins. Measurements of Vickers (H(V)=20.3 GPa) and Knoop microhardness (H(K)=20.4 GPa) revealed that Li(2)B(12)Si(2) is a hard material. The band gap was determined experimentally and calculated by theoretical means. UV/Vis spectra revealed a band gap of 2.27 eV, with which the calculated value of 2.1 eV agrees well. The IR and Raman spectra show the expected oscillations of icosahedral networks. Theoretical investigations of bonding in this structure were carried out with the FP-LAPW method. The results confirm the applicability of simple electron-counting rules and enable some structural specialties to be explained in more detail.  相似文献   

17.
The need to improve electrodes and Li‐ion conducting materials for rechargeable all‐solid‐state batteries has drawn enhanced attention to the investigation of lithium‐rich compounds. The study of the ternary system Li‐Si‐P revealed a series of new compounds, two of which, Li8SiP4 and Li2SiP2, are presented. Both phases represent members of a new family of Li ion conductors that display Li ion conductivity in the range from 1.15(7)×10?6 Scm?1 at 0 °C to 1.2(2)×10?4 Scm?1 at 75 °C (Li8SiP4) and from 6.1(7)×10?8 Scm?1 at 0 °C to 6(1)×10?6 Scm?1 at 75 °C (Li2SiP2), as determined by impedance measurements. Temperature‐dependent solid‐state 7Li NMR spectroscopy revealed low activation energies of about 36 kJ mol?1 for Li8SiP4 and about 47 kJ mol?1 for Li2SiP2. Both compounds were structurally characterized by X‐ray diffraction analysis (single crystal and powder methods) and by 7Li, 29Si, and 31P MAS NMR spectroscopy. Both phases consist of tetrahedral SiP4 anions and Li counterions. Li8SiP4 contains isolated SiP4 units surrounded by Li atoms, while Li2SiP2 comprises a three‐dimensional network based on corner‐sharing SiP4 tetrahedra, with the Li ions located in cavities and channels.  相似文献   

18.
The intermetallic compounds Li(x)Si(y) have attracted considerable interest because of their potential use as anode materials in Li ion batteries. In addition, the crystalline phases in the Li-Si phase diagram turn out to be outstanding model systems for the measurement of fast Li ion diffusion in solids with complex structures. In the present work, the Li self-diffusivity in crystalline Li(12)Si(7) was thoroughly probed by (7)Li NMR spin-lattice relaxation (SLR) measurements. Variable-temperature and -frequency NMR measurements performed in both the laboratory and rotating frames of reference revealed three distinct diffusion processes in Li(12)Si(7). The diffusion process characterized by the highest Li diffusivity seems to be confined to one dimension. It is one of the fastest motions of Li ions in a solid at low temperatures reported to date. The Li jump rates of this hopping process followed Arrhenius behavior; the jump rate was ~10(5) s(-1) at 150 K and reached 10(9) s(-1) at 425 K, indicating an activation energy as low as 0.18 eV.  相似文献   

19.
The nature and surroundings of lithium cations in lithium-exchanged X and A zeolites following loading with the alkali metals Na, K, Rb, and Cs have been studied through (7)Li solid-state NMR spectroscopy. It is demonstrated that the lithium in these zeolites is stable with respect to reduction by the other alkali metals. Even though the lithium cations are not directly involved in chemical interactions with the excess electrons introduced in the doping process, the corresponding (7)Li NMR spectra are extremely sensitive to paramagnetic species that are located inside the zeolite cavities. This sensitivity makes (7)Li NMR a useful probe to study the formation, distribution, and transformation of such species.  相似文献   

20.
High-resolution solid-state (7)Li NMR was used to characterize the structure and dynamics of lithium ion transport in monoclinic Li(3)V(2)(PO(4))(3). Under fast magic-angle spinning (MAS) conditions (25 kHz), three resonances are clearly resolved and assigned to the three unique crystallographic sites. This assignment is based on the Fermi-contact delocalization interaction between the unpaired d-electrons at the vanadium centers and the lithium ions. One-dimensional variable-temperature NMR and two-dimensional exchange spectroscopy (EXSY) are used to probe Li mobility between the three sites. Very fast exchange, on the microsecond time scale, was observed for the Li hopping processes. Activation energies are determined and correlated to structural properties including interatomic Li distances and Li-O bottleneck sizes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号