首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
The temperature gradient within a furnace chamber and the crucible pull rate are the key control parameters for cadmium zinc telluride Bridgman single crystal growth. Their effects on the heat and mass transfer in front of the solid‐liquid interface and the solute segregation in the grown crystal were investigated with numerical modeling. With an increase of the temperature gradient, the convection intensity in the melt in front of the solid‐liquid interface increases almost proportionally to the temperature gradient. The interface concavity decreases rapidly at faster crucible pull rates, while it increases at slow pull rates. Moreover, the solute concentration gradient in the melt in front of the solid‐liquid interface decreases significantly, as does the radial solute segregation in the grown crystal. In general, a decrease of the pull rate leads to a strong decrease of the concavity of the solid‐liquid interface and of the radial solute segregation in the grown crystal, while the axial solute segregation in the grown crystal increases slightly. A combination of a low crucible pull rate with a medium temperature gradient within the furnace chamber will make the radial solute segregation of the grown crystal vanish. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
    
In order to understand the influence of crucible geometry combined with natural convection and Marangoni convection on melt flow pattern, temperature and pressure fields in silicon Czochralski crystal growth process, a set of numerical simulations was conducted. We carry out calculation enable us to determine temperature, pressure and velocity fields in function of Grashof and Marangoni numbers. The essential results show that the hemispherical geometry of crucible seems to be adapted for the growth of a good quality crystal and the pressure field is strongly affected by natural and Marangoni convection and it is more sensitive than temperature. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
紊流模型模拟分析旋转对提拉大直径单晶硅的影响   总被引:1,自引:0,他引:1  
本文采用紊流模型对提拉大直径单晶硅时,对晶体旋转、坩埚旋转及二者共同作用三种情况下,熔体内的流线、等温线、氧的浓度分布、紊流粘性系数、紊动能等作了数值模拟,发现晶体的旋转能提高氧的径向均匀性,紊流粘性系数和紊动能随着坩埚转速的提高先增加后下降.晶体坩埚同时旋转时并不能有效降低紊流粘性系数,但能使子午面上的流动受到抑制,等温线更为平坦,有利于晶体生长.  相似文献   

4.
在熔体法生长ZnGeP2单晶体的过程中,如何解决熔体与坩埚的粘连问题是一个研究关键.本文研究了石英坩埚的镀碳工艺,采用化学气相沉积法成功在坩埚内壁镀上结合牢固且均匀的碳膜.采用垂直布里奇曼法,并结合适时补温技术,在内部镀碳的双层坩埚中成功生长出φ20 mm× 50 mm外观完整,无裂纹的ZnGeP2单晶体.经XRD,TEM,FTIR分析结果表明:生长的ZnGeP2晶体缺陷少,结构完整,红外透过率高,是质量较高的单晶体.  相似文献   

5.
碲锌镉垂直布里奇曼法晶体生长过程固液界面的演化   总被引:2,自引:1,他引:1  
计算模拟了半导体材料碲锌镉垂直布里奇曼法单晶体生长过程,以等温线图展示了固液界面形状的演化,分析了温度梯度和坩埚移动速率对固液界面形状以及晶体内组分偏析的影响.计算结果表明在凝固的初始段,固液界面的凹陷深度较大,随后有较大幅度的减小.整个凝固过程中固液界面的凹陷深度值有一定的波动性.提高温度梯度、降低坩埚移动速率均能有效地减小固液界面的凹陷,改善晶体的径向组分偏析.  相似文献   

6.
单晶材料的新发展及其对生长技术的挑战   总被引:5,自引:5,他引:0  
近年来,宽带隙半导体GaN、SiC、ZnO,弛豫铁电体PZNT,热电半导体β-FeSi2,超导体MgB2等功能晶体材料引起了人们的广泛关注.这些材料大多具有非常优异的性能和巨大的应用前景,但生长工业应用的体单晶非常困难.本文从晶体生长技术角度综述了这些晶体的研究进展,结合其物理化学特性探讨了单晶生长中遇到的一些关键问题.通观这些热点单晶材料的研究现状,一方面我们可以把晶体膜的制备技术看作是传统晶体生长技术的延伸,另一方面,膜技术的发展和单晶生长中存在的问题,也是对传统生长工艺的挑战.  相似文献   

7.
GaSb:Te and GaInSb samples have been solidified under microgravity conditions during the D2 Spacelab mission. Experimental design and parameters are described. Analysis of the thermal data taken during the flight, associated to numerical simulations of heat transfer in the experiment, with the help of FIDAP, gave the experimental conditions (thermal gradients and growth rate). Quantitative chemical analyses of the samples show a chemical segregation characteristic of strong mixing in the melt during crystal growth. Silica crucibles with an internal screw thread groove on the inner wall were used in order to get dewetting of samples from the crucible. It was therefore supposed that Marangoni convection on the free surface associated to the groove might have been the source of convection. This hypothesis has been studied by numerical simulation using FIDAP and the velocity field obtained is in agreement with a strong perturbation of the solutal boundary layer ahead the solid-liquid interface. This can explain the observed chemical segregation.  相似文献   

8.
    
Numerical modeling is applied to investigate the factors affecting the shape of the crystal‐melt interface in Czochralski growth of sapphire crystals having 10 cm in diameter. The modeling is performed for a 2D – axisymmetric furnace configuration, where all the furnace components are included. The shape of the crystal‐melt interface is computed by using the deformable mesh technique. Numerical results show that the conical shape of the interface depends essentially on the internal radiative heat exchanges in the semi‐transparent sapphire crystal, being less influenced by the buoyancy convection. The Marangoni effect enhances the flow near the triple solid‐liquid‐gas point, leading to convex‐concave shape of the growth interface, which is prone to facet formation. Numerically computed shape of the interface is compared to experimental results taken from literature. Applying crystal/crucible rotation has a significant impact on the flow pattern and the shape of the growth interface. Computations performed by applying only crystal rotation at rates higher than a critical value, show a reversed convection at the sample centre, underneath the crystal. This flow affects the shape of the interface, which is less curved and exhibits a convex shape. If the rotation rate is too much increased, the interface shape can be distorted by the intense flow. Application of crucible rotation intensifies the downward flow at the sample centre, leading to increased interface curvature. Rotating both the crystal and crucible in opposite directions generates a complex flow pattern, but has no flattening effect on the interface.  相似文献   

9.
2D/3D‐transient finite‐element computer simulations of heat and mass transport including convection have been performed for a Bridgman configuration close to real growth conditions. The results for the axial distribution of the excessive tellurium in BiSbTe3 semiconductor crystals grown from the melt are compared with the predictions of analytical segregation models.It is shown that Favier's model can be successfully applied for quantitatively estimating model parameters of segregation. Finally, the transition from normal gravity to microgravity conditions is discussed.  相似文献   

10.
研究了PVT法生长SiC过程中的传热行为,以优化生长条件、获得高质量单晶.该研究是针对坩埚盖(籽晶粘附于坩埚盖上)和炉盖之间的传热行为进行的.研究认为,坩埚盖上部石墨毡开孔形状和大小对坩埚盖的径向温度场有很大影响.采用本文简化的模型可以估算坩埚在不同位置下、不同的石墨毡开孔形状和大小时坩埚盖和炉盖之间总的辐射热阻和传热量.对影响坩埚盖和炉盖之间传热的因素进行了讨论.另外,讨论了在生长过程中动态调整坩埚盖散热条件的可行性.  相似文献   

11.
采用光学浮区法生长了φ7 mm×70 mm的红宝石晶体.晶体的生长界面为凸界面,生长方向为<001>方向.X射线双晶摇摆曲线表明晶体具有良好的质量.研究了生长温度、旋转速率、生长速率对晶体质量的影响,确定了合理的工艺条件.通过扫描电镜、能量散射光谱仪、X射线衍射、化学腐蚀结合偏光显微镜对红宝石晶体中气泡、位错、胞状组织和溶质尾迹等缺陷进行了分析.  相似文献   

12.
    
ZnAl2O4 is a well‐known wide band gap compound semiconductor (Eg=3.8eV), ceramic, opto‐mechanical, anti‐thermal coating in aero‐space vehicles and UV optoelectronic devices. A novel method for the growth of single crystals of a ternary oxide material was developed as a fruit of a long term work. Material to be grown as metal incorporated single crystal was taken as precursor and put into a bath containing acid as reaction speed up reagent (catalyst) as well as solvent with a metal foil as cation scavenger. Using this method, ZnAl2O4 crystals having hexagonal facets are prepared from a single optimized bath. Structural and compositional properties of crystals were studied using Philips, Xpert ‐ MPD: X‐ray diffractometer and Philips, ESEM‐TMP + EDAX. Thus technique was found to be a new low cost and advantageous method for growth of single crystals of ternary oxide a material. We hope that these data be helpful either as a scientific or technical basis in material processing. Dedicated to Prof. P. Ramasamy © 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim  相似文献   

13.
    
To grow ZnO single crystals from a high temperature solution of the ZnO‐PbF2 system, a gas cooling system was assembled at the bottom of the crucible to induce nucleation in the initial growth stage. The growth experiments were carried out in a homemade vertical Bridgman furnace and Pt crucible of 28 mm in diameter was used. The furnace temperature was set to 1100°C and the flow rate of the oxygen gas was optimized as 3.0 l/min. ZnO crystal up to 5∼8mm in the thickness was obtained with the lowering rate of 0.3 mm/h. XRD patterns showed that the as‐grown crystal was pure ZnO Wurtzite phase. The impurity ions were analyzed by the glow discharge mass spectroscopy (GDMS) as 390.0 ppm and 40.0 ppm for Pb2+ and F, respectively. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
    
The effect of applied rotating and combined (rotating and static) magnetic fields on silicon transport during the liquid phase diffusion growth of SiGe was experimentally studied. 72‐hour growth periods produced some single crystal sections. Single and polycrystalline sections of the processed samples were examined for silicon composition. Results show that the application of a rotating magnetic field enhances silicon transport in the melt. It also has a slight positive effect on flattening the initial growth interface. For comparison, growth experiments were also conducted under combined (rotating and static) magnetic fields. The processed samples revealed that the addition of static field altered the thermal characteristics of the system significantly and led to a complete melt back of the germanium seed. Silicon transport in the melt was also enhanced under combined fields compared with experiments with no magnetic field. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
    
Liquid phase diffusion experiments have been performed without and with the application of a 0.4 T static magnetic field using a three‐zone DC furnace system. SiGe crystals were grown from the germanium side for a period of 72 h. Experiments have led to the growth of single crystal sections varying from 0 to 10 mm thicknesses. Examination of the processed samples (single and polycrystalline sections) has shown that the effect of the applied static magnetic field is significant. It alters the temperature distribution in the system, reduces mass transport in the melt, and leads to a much lower growth rate. The initial curved growth interface was slightly flattened under the effect of magnetic field. There were no growth striations in the single crystal sections of the samples. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
    
Following the temperature reduction method, growth of single crystals of organic 2,6‐dibenzylidenecyclohexanone (DBCH) material from ethanol solution is reported in the present work. Solubility and metastable zone width measurements were carried out under stirring and nonstirring conditions of solution. Cell dimensions were obtained from single crystal X‐ray diffraction study. From FT‐IR spectral analysis, various functional groups of this crystal were identified. UV‐Visible spectral analysis was made. Mechanical strength of the grown crystal was estimated on the prominent (110) face using a Vickers microhardness tester. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
    
Lithium tantalate, LiTaO3 (LT), single crystal growth by the vertical Bridgman (VB) technique is attempt for the first time. In the present VB‐LT technique, pure platinum crucibles are used in a furnace with a graphite heater and an argon atmosphere. One‐hundred percent solidified crack‐free VB‐LT crystals are successfully grown by composing the initial melts with exactly congruent compositions. The fundamental technical issues for VB‐LT growth are also clarified.  相似文献   

18.
三温区坩埚下降法生长硫镓银晶体   总被引:2,自引:1,他引:1  
本文通过对硫镓银单晶生长习性的分析研究,设计组装了三温区单晶炉,采用三温区坩埚下降法生长出了外形完整、无裂纹的AgGaS2单晶体,尺寸达10mm×25mm.实验测定了AgGaS2晶体的差热分析曲线和红外透射谱,以及单晶{112}解理面的X射线衍射谱,结果表明生长晶体的质量较高.  相似文献   

19.
    
The floating zone growth of magneto‐optical crystal YFeO3 has been investigated. The polycrystalline feed rod was prepared by a pressure of 250MPa and sintering at about 1500°C. A crack‐ free YFeO3 single crystal has been successfully grown. The crystal preferred to crystallize along <100> direction with about 10° deviation. The X‐ray rocking curve of the crystal has a FWHM of 24 arcsec, confirming the high crystal quality of the sample. The (100) plane was etched by hot phosphoric acid and the dislocation density was about 104/cm2. A thin outer layer with Y2O3‐rich composition was found at the periphery of as‐grown crystals, which was attributed to the Fe2O3 evaporation during growth. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
ZnSe红外窗口材料的性能及其制备   总被引:3,自引:0,他引:3  
ZnSe是一种优秀的红外窗口材料,得到广泛的关注.在本文叙述了ZnSe红外窗口材料的光学特性和力学特性,以及详细地描述ZnSe体单晶熔体法、气相法、溶液法和固相再结晶制备技术及其影响因素.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号