首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
ZnCo2O4 nanoflakes were directly grown on Ni foam via a two-step facile strategy, involving cathodic electrolytic electrodeposition (ELD) method and followed by a thermal annealing treatment step. The results of physical characterizations exhibit that the mesoporous ZnCo2O4 nanoflakes have large electroactive surface areas (138.8 m2 g?1) and acceptable physical stability with the Ni foam, providing fast electron and ion transport sites. The ZnCo2O4 nanoflakes on Ni foam were directly used as integrated electrodes for supercapacitors and their electrochemical properties were measured in 2 M KOH aqueous solution. The ZnCo2O4 nanoflake electrode exhibits a high capacitance of 1781.7 F g?1 at a current density of 5 A g?1 and good rate capability (62% capacity retention at 50 A g?1). Also, an excellent cycling ability at various current densities from 5 to 50 A g?1 was obtained and 92% of the initial capacitance maintained after 4000 cycles. The results demonstrate that the proposed synthesis route is cost-effective and facile and can be developed for preparation of electrode materials in other electrochemical supercapacitors.  相似文献   

2.
A simple sucrose-assisted combustion and subsequent high-temperature calcination route have been employed to prepare hierarchical porous ZnMn2O4 nanostructure. When used as an electrode for supercapacitor, the ZnMn2O4 electrode displays a high specific capacitance of 411.75 F g?1 at a current density of 1 A g?1, remarkable capacitance retention rate of 64.28 % at current density of 32 A g?1 compared with 1 A g?1, as well as excellent cycle stability (reversible capacity retention of 88.32 % after 4000 cycles). The outstanding electrochemical performances are mainly attributed to its hierarchical porous architecture, which provides large reaction surface area, fast ion and electron transfer, and good structure stability. All these impressive results demonstrate that ZnMn2O4 shows promise for its application in supercapacitors.  相似文献   

3.
A Co3O4/vapor-grown carbon fiber (VGCF) hybrid material is prepared by a facile approach, namely, via liquid-phase carbonate precipitation followed by thermal decomposition of the precipitate at 380 °C for 2 h in argon gas flow. The material is characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Brunauer-Emmett-Teller specific surface area analysis, and carbon elemental analysis. The Co3O4 in the hybrid material exhibits the morphology of porous submicron secondary particles which are self assembled from enormous cubic-phase crystalline Co3O4 nanograins. The electrochemical performance of the hybrid as a high-capacity conversion-type anode material for lithium-ion batteries is investigated by cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic discharge/charge methods. The hybrid material demonstrates high specific capacity, good rate capability, and good long-term cyclability, which are far superior to those of the pristine Co3O4 material prepared under similar conditions. For example, the reversible charge capacities of the hybrid can reach 1100–1150 mAh g?1 at a lower current density of 0.1 or 0.2 A g?1 and remain 600 mAh g?1 at the high current density of 5 A g?1. After 300 cycles at 0.5 A g?1, a high charge capacity of 850 mAh g?1 is retained. The enhanced electrochemical performance is attributed to the incorporated VGCFs as well as the porous structure and the smaller nanograins of the Co3O4 active material.  相似文献   

4.
A novel approach of double hydroxide-mediated synthesis of nickel cobaltite (NiCo2O4) electro-active material by the hydrothermal method is reported. The obtained NiCo2O4 electro-active material displays the spinel cubic phase and hexagonal-like morphology. Thermogravimetry analysis confirms the thermal stability of the electrode material. The functional groups and phase formation of NiCo2O4 have been confirmed by FT-IR and Raman spectral analysis. The modified NiCo2O4 electrode exhibits the highest specific capacitance of 767.5 F g?1 at a current density of 0.5 A g?1 in 3 M KOH electrolyte and excellent cyclic stability (94 % capacitance retention after 1000 cycles at a high current density of 5 A g?1). The excellent electrochemical performance of the electrode is attributed to the hexagonal-like morphology, which contributes to the rich surface electro-active sites and easy transport pathway for the ions during the electrochemical reaction. The attractive Faradic behavior of NiCo2O4 electrode has been ascribed to the redox contribution of Ni2+/Ni3+ and Co2+/Co3+ metal species in the alkaline medium. The symmetrical two-electrode cell has been fabricated using the NiCo2O4 electro-active material with excellent electrochemical properties for supercapacitor applications.  相似文献   

5.
One-dimensional NiMoO4 · xH2O nanorods were synthesized by a facile template-free hydrothermal method as a potential electrode material for supercapacitors. The influences of reaction temperature, reaction time, and nickel source on the properties of resultant samples were investigated. Electrochemical data reveal that the as-synthesized one-dimensional NiMoO4 · xH2O nanorod superstructures can deliver a remarkable specific capacitance (SC) of 1131 F g?1 at a current density of 1 A g?1 and remain as high as 914 F g?1 at 10 A g?1 in a 6 M KOH aqueous solution. Moreover, there is only 6.2 % loss of the maximum SC after 1000 continuous charge–discharge cycles at the high current density of 10 A g?1. Such outstanding electrochemical performance may be owing to the unique one-dimensional hierarchical structures, which can facilitate the electrolyte ions and electrons to easily contact the NiMoO4 nanorod building blocks and then allow for sufficient faradaic reactions to take place, even at high current densities.  相似文献   

6.
The structure and electrochemical properties of amorphous CoS2 and crystalline CoS2 have been studied with both experimental characterization and theoretical calculations. In the field of experimental characterization, a facile chemical precipitation method is used to synthesize amorphous and crystalline CoS2 samples with calcining temperatures of 200 and 280 °C, respectively. Comparing with crystalline CoS2, amorphous structure of CoS2 manifests great electron conductivity, effective porous structure, and exhibit a high specific capacitance of 996.16 F g?1 at current density of 0.5 A g?1, excellent rate capability of 89.8% retention with the current density ranging from 0.5 to 5 A g?1, and a great cycling stability of 97.6% retention after 10,000 cycles at 2 A g?1 in 6 mol L?1 KOH aqueous electrolyte. In the area of theoretical calculation, we used the first principle and obtained the band structure with band gap of 0.00369 eV and DOSs with high locality of D-orbital from 69.88689 electrons/eV main peak, in the CoS2 amorphous. The result confirms that amorphous CoS2 have higher conductivity than crystalline CoS2 in theory. In addition, the as-assembled asymmetric supercapacitor of Co-S-200//AC also exhibits the maximum specific capacitance of 104 F g?1 within a cell voltage from 0 to 1.5 V at current density of 0.5 A g?1 and indicates a great cycling stability of 95.68% and excellent capacitance behavior. All results demonstrate a great potential of amorphous CoS2 active material for supercapacitors.  相似文献   

7.
Honeycomb-like MnO2 nanospheres were synthesized using stainless steel substrates by a facile chemical bath deposition method. The obtained nanospheres were about 200–400 nm in diameter and consisted of porous ultrathin nanosheets. Honeycomb-like MnO2 nanospheres exhibited a high specific capacitance of 240 F g?1 and 87.1% capacitance retention after 1000 cycles at a current density of 0.5 A g?1. These remarkable electrochemical results imply great potential for applications of the honeycomb-like MnO2 nanospheres in supercapacitors.  相似文献   

8.
A dandelion-like mesoporous Co3O4 was fabricated and employed as anode materials of lithium ion batteries (LIBs). The architecture and electrochemical performance of dandelion-like mesoporous Co3O4 were investigated through structure characterization and galvanostatic charge/discharge test. The as-prepared dandelion-like mesoporous Co3O4 consisted of well-distributed nanoneedles (about 40 nm in width and about 5 μm in length) with rich micropores. Electrochemical experiments illustrated that the as-prepared dandelion-like mesoporous Co3O4 as anode materials of LIBs exhibited high reversible specific capacity of 1430.0 mA h g?1 and 1013.4 mA h g?1 at the current density of 0.2 A g?1 for the first and 100th cycle, respectively. The outstanding lithium storage properties of the as-prepared dandelion-like mesoporous Co3O4 might be attributed to its dandelion-like mesoporous nanostructure together with an open space between adjacent nanoneedle networks promoting the intercalation/deintercalation of lithium ions and the charge transfer on the electrode. The enhanced capacity as well as its high-rate capability made the as-prepared dandelion-like mesoporous Co3O4 to be a good candidate as a high-performance anode material for LIBs.  相似文献   

9.
In this work, the commercial carbon paper was firstly peeled in K2CO3 solution and then was further treated in a KNO3 solution to form functional exfoliation graphene (FEG) on the commercial carbon paper. The FEG/carbon paper was characterized by Raman spectra and scanning electron microscopy, confirming that some typical layered fold graphenes were successfully peeled off and stood on the carbon paper matrix. Then, Fe3O4 nanoparticles (NPs) were grown on the surface of FEG/carbon paper and the as-prepared Fe3O4 NPs/FEG/carbon paper was directly used as supercapacitor electrode. The specific capacitance of Fe3O4 NPs/FEG/carbon paper was about 316.07 F g?1 at a current density of 1 A g?1. Furthermore, the FEG/carbon papers were also functionalized by benzene carboxylic acid to form FFEG/carbon papers, and then the Fe3O4 NPs were grown on the surface of FFEG/carbon paper. The specific capacitance of Fe3O4 NPs/FFEG/carbon paper was 470 F g?1 at a current density of 1 A g?1, superior to some previous reported results. This work might provide a new strategy to prepare various nanostructures on FFEG/carbon papers for future applications.  相似文献   

10.
Hybrid CoMoO4 nanorods with carbon (C) and graphene oxide (rGO) are successfully synthesized via one-step hydrothermal process. Hybrid α-CoMoO4 nanorods have shown excellent electrochemical performances compared to pristine CoMoO4 in alkaline electrolyte. Specifically, CoMoO4/C nanorod exhibits a maximum specific capacitance of 451.6 F g?1 at the current density of 1 A g?1, whereas CoMoO4/rGO shows high specific capacitance of 336.1 F g?1 at the same current density. Both the hybrid nanorods show good rate capability even at high current density of 20 A g?1 and long-term cyclic stability. The observed electrochemical features of the hybrid CoMoO4 nanostructure could be attributed to the presence of highly conductive carbonaceous material on unique one-dimensional nanorod microstructure which enhances the electrical conductivity of the nanorods thereby allowing faster electrolyte ion diffusion during the redox process.  相似文献   

11.
Three-dimensional hierarchical Co3O4@C hollow microspheres (Co3O4@C HSs) are successfully fabricated by a facile and scalable method. The Co3O4@C HSs are composed of numerous Co3O4 nanoparticles uniformly coated by a thin layer of carbon. Due to its stable 3D hierarchical hollow structure and uniform carbon coating, the Co3O4@C HSs exhibit excellent electrochemical performance as an anode material for lithium-ion batteries (LIBs). The Co3O4@C HSs electrode delivers a high reversible specific capacity, excellent cycling stability (1672 mAh g?1 after 100 cycles at 0.2 A g?1 and 842.7 mAh g?1 after 600 cycles at 1 A g?1), and prominent rate performance (580.9 mAh g?1 at 5 A g?1). The excellent electrochemical performance makes this 3D hierarchical Co3O4@C HS a potential candidate for the anode materials of the next-generation LIBs. In addition, this simple synthetic strategy should also be applicable for synthesizing other 3D hierarchical metal oxide/C composites for energy storage and conversion.  相似文献   

12.
N. Padmanathan  S. Selladurai 《Ionics》2013,19(11):1535-1544
NiCo2O4 nanostructure was successfully synthesized via a d-glucose-assisted solvothermal process. Spinel-type cubic phase and mesoporous microstructure of the sample for different calcination temperatures were confirmed by X-ray diffraction and transmission electron microscopy. Typical pseudocapacitance feature of the NiCo2O4 treated at different temperatures was then evaluated in aqueous 6 M KOH electrolyte solution. Electrochemical measurements showed that the spinel nickel cobaltite nanostructure heated at 300 °C exhibits maximum specific capacitances of 524 F g?1 at 0.5 A g?1 and 419 F g?1 at 10 A g?1 with excellent cycle stability and only ~9 % of capacitance loss after 2,500 cycles. This demonstrates the potential application of the material for supercapacitors. The attractive pseudocapacitive performance of NiCo2O4 is mainly attributed to the redox contribution of the Ni and Co metal species, high surface area, and their desired mesoporous nanostructure.  相似文献   

13.
MnO2/graphite electrode material is successfully synthesized by electrodeposition under supergravity field from manganese acetate and graphite suspending solution. X-ray diffraction and field emission scanning electron microscopy show that the obtained composite is γ-MnO2/graphite. The process of depositing the MnO2/graphite was shown by the schematic illustration. Galvanostatic charge/discharge and cyclic voltammograms tests are applied to investigate electrochemical performances of the composite electrodes prepared under supergravity fields. MnO2/graphite synthesized under supergravity field exhibits good discharge capacitance and the specific capacitance is 367.77 F g?1 at current density of 0.5 A g?1. It is found that supergravity field has effects on the electrochemical performances of MnO2/graphite material.  相似文献   

14.
At present, a lot of attention has been paid to the reasonable design and synthesis of materials with core shell structure for high-performance supercapacitors. Herein, the Co3O4@MnO2 core shell arrays on nickel foam are successfully synthesized via a facile and effective hydrothermal method followed with annealing process. The sample was characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Electrochemical performance of the Co3O4@MnO2 material was studied using cyclic voltammetry, charge/discharge cycling, and electrochemical impedance measurements in 6 mol L?1 KOH aqueous electrolyte. The results indicated that the Co3O4@MnO2 material presented excellent electrochemical performance in terms of specific capacitance, cyclic stability, and charge/discharge stability.  相似文献   

15.
Pure LiMn2O4 samples with high crystallinity (LMO-1# and LMO-2#) were successfully synthesized by a facile hydrothermal method using δ-MnO2 nanoflowers and α-MnO2 nanowires as the precursors. The as-prepared samples were analyzed by XRD, SEM, and Brunauer-Emmett-Teller (BET), and their capacitive properties were investigated by cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge/discharge test. Two LiMn2O4 samples showed good capacitive behavior in aqueous hybrid supercapacitors. AC//LMO-1# and AC//LMO-2# delivered the initial specific capacitance of 45.4 and 40.7 F g?1 in 1 M Li2SO4 electrolyte at a current density of 200 mA g?1 in the potential range of 0~1.5 V, respectively. After 1000 cycles, the capacitance retention was 97.6% for AC//LMO-1# and 93.7% for AC//LMO-2#. Obviously, LMO-1# from δ-MnO2 nanoflowers exhibited higher specific capacitance and better cycling performance than LMO-2#, so LMO-1# was more suitable as the positive electrode material in hybrid supercapacitors.  相似文献   

16.
Nanocrystalline Li2TiO3 was successfully synthesized using solid-state reaction method. The microstructural and electrochemical properties of the prepared material are systematically characterized. The X-ray diffraction pattern of the prepared material exhibits predominant (002) orientation related to the monoclinic structure with C2/c space group. HRTEM images and SAED analysis reveal the well-developed nanostructured particles with average size of ~40 nm. The electrochemical properties of the prepared sample are carried out using cyclic voltammetry (CV) and chronopotentiometry (CP) using Pt//Li2TiO3 cell in 1 mol L?1 Li2SO4 aqueous electrolyte. The Li2TiO3 electrode exhibits a specific discharge capacity of 122 mAh g?1; it can be used as anode in Li battery within the potential window 0.0–1.0 V, while investigated as a supercapacitor electrode, it delivers a specific capacitance of 317 F g?1 at a current density of 1 mA g?1 within the potential range ?0.4 to +0.4 V. The demonstration of both anodic and supercapacitor behavior concludes that the nanocrystalline Li2TiO3 is a suitable electrode material for supercapattery application.  相似文献   

17.
The CeO2 nanorod framework was synthesized via a facile-dealloying method coupled with calcination treatment for supercapacitors. X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) characterizations identified the cubic phase and nanorod morphology of the synthesized sample. Their electrochemical performance was also evaluated by cyclic voltammetry, galvanostatic charge-discharge tests, and cycling performances. The results show that CeO2 nanorod framework possesses high-specific capacitance and superior charge/discharge stability, which are mainly ascribed to its high-Brunauer-Emmett-Tellar surface area (110.6 m2 g?1). Notably, the CeO2//AC (Active Carbon) asymmetric supercapacitor device exhibits excellent cycling stability with capacity retention of 133.6% after cycling for 30,000 cycles.  相似文献   

18.
A novel approach was developed to prepare hollow polypyrrole (PPy) nanospheres and nitrogen-doped graphene/hollow PPy nanospheres (NG/H-PPy) composites. In this process, uniform poly (methyl methacrylate-butyl methacrylate-methacrylic acid) (PMMA-PBMA-PMAA) latex microspheres as sacrificial templates were synthesized by using an emulsion polymerization method. Then, hollow PPy nanospheres were obtained on the surface of PMMA-PBMA-PMAA microspheres by in situ chemical oxidative polymerization. Finally, H-PPy was embedded in NG layers successfully through a simple approach. The nanobeads have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectra, and Fourier transform infrared spectra (FTIR). Different electrochemical methods including cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), and electrochemical impedance spectroscopy (EIS) have been applied to study the electrochemical properties. The specific capacitance of NG/H-PPy composites based on the three-electrode system is as high as 575 F g?1 at a current density of 1 A g?1 and enhanced stability about 90.1 % after 500 cycles, indicating that the composite has an impressive capacitance and excellent cycling performance.  相似文献   

19.
We demonstrated the effect of ZnO (different wt%)-coated LiMnPO4-based cathode materials for electrochemical lithium ion batteries. ZnO-coated LiMnPO4 cathode materials were prepared by the sol-gel method. X-ray diffraction (XRD) analysis indicates that there is no change in structure caused by ZnO coating, and field emission scanning electron microscopy (FESEM) images depict the closely packed particles. Galvanostatic charge-discharge tests show the ZnO-coated LiMnPO4 sample has an enhanced electrochemical performance as compared to pristine LiMnPO4. The 2 wt% of ZnO-based LiMnPO4 exhibited maximum discharge capacity of 102.2 mAh g?1 than pristine LiMnPO4 (86.2 mAh g?1) and 1 wt% of ZnO-based LiMnPO4 (96.3 mAh g?1). The maximum cyclic stability of 96.3 % was observed in 2 wt% of ZnO-based LiMnPO4 up to 100 cycles. This work exhibited a promising way to develop a surface-modified LiMnPO4 using ZnO for enhanced electrochemical performance in device application.  相似文献   

20.
Nanoporous/cracked structures of cobalt oxide (Co3O4) electrodes were successfully fabricated by electroplating of zinc–cobalt onto previously formed TiO2 nanotubes by anodizing of titanium, leaching of zinc in a concentrated alkaline solution and followed by drying and annealing at 400 °C. The structure and morphology of the obtained Co3O4 electrodes were characterized by X-ray diffraction, EDX analysis and scanning electron microscopy. The results showed that the obtained Co3O4 electrodes were composed of the nanoporous/cracked structures with an average pore size of about 100 nm. The electrochemical capacitive behaviors of the nanoporous Co3O4 electrodes were investigated by cyclic voltammetry, galvanostatic charge–discharge studies and electrochemical impedance spectroscopy in 1 M NaOH solution. The electrochemical data demonstrated that the electrodes display good capacitive behavior with a specific capacitance of 430 F g?1 at a current density of 1.0 A g?1 and specific capacitance retention of ca. 80 % after 10 days of being used in electrochemical experiments, indicating to be promising electroactive materials for supercapacitors. Furthermore, in comparison with electrodes prepared by simple cathodic deposition of cobalt onto TiO2 nanotubes(without dealloying procedure), the impedance studies showed improved performances likely due to nanoporous/cracked structures of electrodes fabricated by dealloying of zinc, which provide fast ion and electron transfer routes and large reaction surface area with the ensued fast reaction kinetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号