首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of [1,2,4]triazolo[4,3-a]pyridine derivatives bearing a sulfide substructure was designed, synthesized and characterized via 1H·NMR, 13C·NMR, IR and elemental analyses. Bioassay Results indicated some of the derivatives displayed good fungicidal activity on Rhizoctonia cerealis, moderated insecticidal activity against Plutella xylostella and good insecticidal activity on Helicoverpa armigera. The inhibitory effects of compounds 4g and 4u against Rhizotonia cerealis were 70.9% at 50 μg mL?1; the IC50 values of compounds 4d and 4s against Plutella xylostella were 43.87 and 50.75 μg mL?1, respectively. And the IC50 values of compounds 4d, 4q, and 4s on Helicoverpa armigera were 58.3, 77.14 and 65.31 μg mL?1, respectively, which were better than that of commercial chlorpyrifos (103.77 μg mL?1).  相似文献   

2.
A rapid, selective and convenient liquid chromatography–mass spectrometric method for the simultaneous determination of paracetamol and caffeine in human plasma was developed and validated. Analytes and theophylline [internal standard (I.S.)] were extracted from plasma samples with diethyl ether-dichloromethane (3:2, v/v) and separated on a C18 column (150 × 4.6 mm ID, 5 μm particle size, 100 Å pore size). The mobile phase consisted of 0.2% formic acid–methanol (60:40, v/v). The assay was linear in the concentration range between 0.05 and 25 μg mL?1 for paracetamol and 10–5,000 ng mL?1 for caffeine, with the lower limit of quantification of 0.05 μg mL?1 and 10 ng mL?1, respectively. The intra- and inter-day precision for both drugs was less than 8.1%, and the accuracy was within ±6.5%. The single chromatographic analysis of plasma samples was achieved within 4.5 min. This validated method was successfully applied to study the pharmacokinetics of paracetamol and caffeine in human plasma.  相似文献   

3.
A sensitive and accurate LC method for the determination of AT13148 enantiomeric purity has been developed and validated. Baseline separation with a resolution higher than 1.8 was accomplished within 15 min using a Chiralpak AD-H column (250 × 4.6 mm; particle size 5 μm) and n-hexane: 2-propanol: diethylamine (85:15:0.1, v/v) as mobile phase at a flow rate of 1 mL min?1. Eluted analytes were monitored by UV absorption at 254 nm. The effects of mobile phase components, temperature and flow rate on enantiomeric selectivity and resolution of enantiomers were investigated. Calibration curves were plotted within the concentration range between 7 and 500 μg mL?1 (n = 11), and the recoveries between 98.24 and 100.99% were obtained, with relative standard deviation lower than 1.32%. LOD and LOQ for AT13148 were 2.46 and 7.38 μg mL?1 and for its enantiomer were 2.54 and 7.49 μg mL?1, respectively. It was demonstrated that the developed method was accurate, robust and sensitive for the determination of enantiomeric purity of AT13148, especially for the analysis of bulk samples.  相似文献   

4.
A sensitive and accurate LC method was developed and further validated for the determination of enantiomeric purity of GSK962040. Before separation, a pre-column derivatization procedure was performed. Baseline separation with a resolution higher than 1.9 was accomplished within 15 min using a Chiralpak AD-H (250 × 4.6 mm; particle size 5 μm) column, with n-hexane: 2-propanol (85:15 v/v) as mobile phase at a flow rate of 1 mL min?1. The eluted analytes were subsequently detected with a UV detector at 260 nm. The effects of mobile phase components and temperature on enantiomeric selectivity as well as resolution of enantiomers were thoroughly investigated. The calibration curves were plotted within the concentration range between 4 and 200 μg mL?1 (n = 8), and recoveries between 98.15 and 101.48% were obtained, with relative standard deviation (RSD) lower than 1.42%. The LOD and LOQ for the Boc-GSK962040 were 1.23 and 4.15 μg mL?1 and for its enantiomer were 1.38 and 4.76 μg mL?1, respectively. The developed method was also evaluated and validated by analyzing bulk samples with different enantiomeric ratios of GSK962040. It was demonstrated that the method was accurate, robust and sensitive, and also had practical utilities for real analysis.  相似文献   

5.
A sensitive and accurate liquid chromatographic method for the determination of AR-42 enantiomeric purity has been developed and validated. Baseline separation with a resolution higher than 1.9 was accomplished within 10 min using a CHIRALPAK AD column (250 mm × 4.6 mm; particle size 5 μm) and n-hexane/2-propanol/diethylamine (75:25:0.1 v/v/v) as mobile phase at a flow rate of 1 mL min?1. Eluted analytes were monitored by UV absorption at 260 nm. The effects of mobile phase components, temperature and flow rate on enantiomeric selectivity and resolution of enantiomers were investigated. Calibration curves were plotted within the concentration range between 0.001 and 0.5 mg mL?1 (n = 10), and the recoveries between 98.23 and 101.87% were obtained, with relative standard deviation lower than 1.31%. Limit of detection and limit of quantitation for AR-42 were 0.39 and 1.28 μg mL?1 and for its enantiomer were 0.36 and 1.19 μg mL?1, respectively. It was demonstrated that the developed method was accurate, robust and sensitive for the determination of enantiomeric purity of AR-42, especially for the analysis of bulk samples.  相似文献   

6.
A stability-indicating UPLC method was developed for quantitative determination of 9-desmethyl-α-dihydrotetrabenazine (9-DM-α-DTBZ), the precursor for preparing a widely used vesicular monoamine transporter 2 imaging agent 11C-α-DTBZ. Compound 9-DM-α-DTBZ was subjected to various stress conditions consisting of acidic, alkaline, oxidative, thermal and photolytic forced degradation. The decomposition of 9-DM-α-DTBZ was observed under oxidative condition, whereas no obvious degradation was shown under the other stress conditions. For chromatographic separation of 9-DM-α-DTBZ and its degradation products, an Acquity UPLC BEH C18 column (2.1 × 100 mm, 1.7 μm) and a mobile phase of 20:80 (v/v) methanol/ammonium acetate buffer (pH 4.5, 10 mM) were used. Quantitative determination of 9-DM-α-DTBZ was performed using a PDA detector at a flow rate of 0.30 mL min?1. UPLC–MS analysis was further utilized to characterize the two degradation products. The proposed method was fully validated as per USP guidelines with respect to linearity, accuracy, precision, robustness, limit of detection (LOD) and limit of quantification (LOQ). The linear regression analysis showed a good linear relationship (r 2  = 0.9995) in the concentration range of 0.001–1.00 mg mL?1 (n = 6). The assay method was found to have good precision (1.14–1.35% RSD) and recovery (98.91–101.23%). Additionally, the LOD and LOQ of 9-DM-α-DTBZ were 0.30 and 1.00 μg mL?1, respectively. These results indicated that the present method could be used to evaluate the quality of regular production samples and also used in stability assays.  相似文献   

7.
Numerous desulfurizing bacteria from the Rhodococcus genus harbor conserved dsz genes responsible for the degradation of sulfur compounds through 4S pathway. This study describes a newly identified desulfurizing bacterium, Rhodococcus sp. FUM94, which unlike previously identified strains encodes a truncated dsz operon. DNA sequencing revealed a frameshift mutation in the dszA gene, which led to an alteration of 66 amino acids and deletion of other C-terminal 66 amino acids. The resulting DszA polypeptide was shorter than DszA in Rhodococcus sp. IGTS8 reference strain. Despite the truncation, desulfurizing activity of the operon was observed and attributed to the removal of an overlap of dszA and dszB genes, and lack of active site in the altered region. Desulfurization experiments resulted in specific production rate of 6.3 mmol 2-hydroxy biphenyl (kgDCW)?1 h?1 at 2 g l?1 biocatalyst concentration and 68.8% biodesulfurization yield at 20 g l?1 biocatalyst concentration, both at 271 μM dibenzothiophene concentration which is comparable to similar wild-type biocatalysts.  相似文献   

8.
9.
From three cell-associated β-xylosidases produced by Aureobasidium pullulans CBS 135684, the principal enzyme was enriched to apparent homogeneity and found to be active at high temperatures (60–70 °C) over a pH range of 5–9 with a specific activity of 163.3 units (U) mg?1. The enzyme was thermostable, retaining over 80% of its initial activity after a 12-h incubation at 60 °C, with half-lives of 38, 22, and 10 h at 60, 65, and 70 °C, respectively. Moreover, it was tolerant to xylose inhibition with a K i value of 18 mM. The K m and V max values against p-nitrophenyl-β-d-xylopyranoside were 5.57 ± 0.27 mM and 137.0 ± 4.8 μmol min?1 mg?1 protein, respectively. When combining this β-xylosidase with xylanase from the same A. pullulans strain, the rate of black liquor xylan hydrolysis was significantly improved by up to 1.6-fold. The maximum xylose yield (0.812 ± 0.015 g g?1 dry weight) was obtained from a reaction mixture containing 10% (w/v) black liquor xylan, 6 U g?1 β-xylosidase and 16 U g?1 xylanase after incubation for 4 h at 70 °C and pH 6.0.  相似文献   

10.
In the present study, a series of chalcone derivatives including 17 new compounds were synthesised; their antibacterial activities against eleven bacteria, and their free radical-scavenging activities using DPPH were evaluated. All compounds showed significant antibacterial activities against both Gram-positive and Gram-negative bacteria. In particular, compound IIIf strongly inhibited Staphylococcus aureus (JMC 2151) and Enterococcus faecalis (CARS 2011-012) with MIC values of 6.25 µg mL?1 and 12.5 µg mL?1, respectively, which are comparable to that of the standard antibiotic, nalidixic acid. Compound IIIg also inhibited S. aureus with a MIC value similar to that of nalidixic acid (6.25 µg mL?1). Furthermore, like nalidixic acid (MIC value of 25 µg mL?1), compounds IIIa, IIIc and IIId inhibited Listeria monocytogenes (ATCC 43256) with MIC values of 25 µg mL?1, 12.5 µg mL?1 and 25 µg mL?1, respectively. Quantitative structure-activity relationship (Q-SAR) studies using physicochemical calculations indicated that the antibacterial activities of chalcone derivatives correlated well with predicted physicochemical parameters (logP and PSA). Docking simulation by positioning the most active compound IIIf in the active site of the penicillin-binding protein (PBP-1b) of S. aureus was performed to explore the feasible binding mode. Furthermore, most of the compounds synthesised exhibited significant DPPH radical-scavenging activity, although compounds IIc and IIIc exhibited the greatest antioxidant activity with IC50 values of 1.68 µM and 1.44 µM, respectively, comparable to that of the standard antioxidant, ascorbic acid (1.03 µM).  相似文献   

11.
In this study, for the first time, an organic solvent-free air-assisted liquid–liquid microextraction method has been reported for the extraction and preconcentration of phthalic acids (o-phthalic acid, m-phthalic acid, and p-phthalic acid) from edible oil samples. The method is based on the repeated aspirating/injection of an alkaline aqueous solution and the oil sample mixture in a conical bottom centrifuge tube to form a cloudy solution. After phase separation by centrifuging, the sedimented phase is directly analyzed by high-performance liquid chromatography–diode array detection. Under the optimum extraction conditions, the method showed low limits of detection and quantification between 0.11–0.29 and 0.28–0.91 ng mL?1, respectively. Extraction recoveries and enrichment factors were from 81 to 97% and 406 to 489, respectively. The relative standard deviations for the analysis of 5 ng mL?1 of each analyte were less than 5.9% for intraday (n = 6) and interday (n = 5) precisions. Finally, different oil samples were successfully analyzed using the proposed method and m-phthalic acid, and p-phthalic acid were determined in some of them at ng mL?1 level.  相似文献   

12.
Two simple, reliable and accurate spectrophotometric methods were described for the simultaneous determination of thiamine hydrochloride (THC) and pyridoxine hydrochloride (PYH) in pharmaceutical formulation without any pre-separation procedures. These methods are based on the difference in the color observed from diazotization coupling methods of THC and PYH. When the diazonium salts formed from the reaction of HNO2 with p-nitroaniline (PNA), they were coupled with THC and PYH in sodium hydroxide medium and the formed dyes had maximum absorption bands at 452 nm for THC and 482 nm for PYH. All experimental parameters were optimized to reduce experimental error. The first method was based on the Vierodt?s method, in which the two wavelengths 452 and 482 nm λmax of THC and PYH, respectively, were selected for the formation of simultaneous equation. In the second method the H-point standard addition method (HPSAM) was applied, when absorbances at wavelengths pair, 452 and 500 nm, were monitored with the addition of a standard solution of THC to a solution containing a fixed concentration of THC and PYH. The results from applying Vierodt?s and HPSA methods showed that THC and PYH can be determined simultaneously in the concentration range 1.5–11.0 μg mL?1 (LOD?=?0.48 μg mL?1) and 0.4–5.0 μg mL?1 (LOD?=?0.23 μg mL?1), respectively. The methods were successfully applied for simultaneous determination of THC and PYH in different synthetic and pharmaceutical products. To assess the obtained vitamins (THC and PYH) analysis by both methods (Vierodt?s and HPSAM) in the several pharmaceutical formulations, the results are compared with that obtained by HPLC method as a reference, and good agreements between the results indicate the reliability of the proposed methods.  相似文献   

13.
In this study, a method for the efficient production of dehydroepiandrosterone (DHEA) from phytosterols in a vegetable oil/aqueous two-phase system by Mycobacterium sp. was developed. After the 3-hydroxyl group of phytosterols was protected, they could be converted into DHEA with high yield and productivity by Mycobacterium sp. NRRL B-3683. In a shake flask biotransformation, 15.05 g l?1 of DHEA and a DHEA yield of 85.39% (mol mol?1) were attained after 7 days with an initial substrate concentration of 25 g l?1. When biotransformation was carried out in a 30-l stirred bioreactor with 25 g l?1 substrate, the DHEA concentration and yield was 16.33 g l?1 and 92.65% (mol mol?1) after 7 days, respectively. The results of this study suggest that inexpensive phytosterols could be utilized for the efficient production of DHEA.  相似文献   

14.
This work aimed to characterize two native microalgal strains newly isolated from South Mediterranean areas and identified as Chlorella sorokiniana ES3 and Neochloris sp. AM2. The growth properties and biochemical composition of these microalgae were evaluated in different culture media (Algal, BG-11, f/2, and Conway). Among the tested media, nitrate- and phosphate-rich Algal medium provided the maximum biomass productivities (85.5 and 111.5 mg l?1 day?1 for C. sorokiniana and Neochloris sp., respectively), while the nitrate- and phosphate-deficient f/2 medium resulted in the highest lipid productivities (24.1 and 35.8 mg l?1 day?1 for C. sorokiniana and Neochloris sp., respectively). The physiological state of both microalgae was investigated under different light and temperature levels using the pulse amplitude-modulated fluorometry. The better photosynthetic efficiency of C. sorokiniana was obtained at 23 °C with a light saturation of 156 μE m?2 s?1, while that of Neochloris sp. was achieved at 15 °C with a light saturation of 151 μE m?2 s?1. The analysis of fatty acid profile and biodiesel parameters revealed that C. sorokiniana, cultivated in Algal and f/2 media, can be considered as a suitable candidate for high-quality biodiesel production.  相似文献   

15.
Growths of Lyngbya limnetica and Oscillatoria obscura were investigated at varying pH, light intensity, temperature, and trace element concentration with a view to optimize these parameters for obtaining the maximum carbohydrate content. The maximum growth for both strains was obtained at pH 9.0 and temperature 20 ± 3 °C using a light intensity of 68.0 μmol m?2 s?1 with continuous shaking. Growth under the nitrogen starvation condition affected the carbohydrate content more compared to the phosphorus starvation, and maximum concentrations were found as 0.660 and 0.621 g/g of dry biomass for L. limnetica and O. obscura, respectively. Under the optimized nitrogen-rich conditions, the specific growth rates for the two strains were found to be 0.187 and 0.215 day?1, respectively. The two-stage growth studies under nitrogen-rich (stage I) followed by nitrogen starvation (stage II) conditions were performed, and maximum biomass and carbohydrate productivity were found as 0.088 and 0.423 g L?1 day?1 for L. limnetica. This is the first ever attempt to evaluate and optimize various parameters affecting the growth of cyanobacterial biomass of L. limnetica and O. obscura as well as their carbohydrate contents.  相似文献   

16.
Dihydromyricetin-mediated silver nanoparticles (DMY-AgNPs) were synthesized and their efficacy against fungal pathogens tested in vitro. The shape of DMY-AgNPs appeared to be spherical with size of ~34 nm. Fourier-transform infrared (FT-IR) analysis indicated that –OH and C=O groups were involved in nanoparticle formation. The XRD pattern of DMY-AgNPs showed strong peaks at 38°, 44°, and 64°, corresponding to reflection from (111), (200), and (220) planes. Five opportunistic fungal pathogens, namely Aspergillus fumigatus, Aspergillus niger, Paecilomyces formosus, Candida albicans, and Candida parapsilosis, were isolated from patients suffering from respiratory tract infections. Growth of each fungal strain was inhibited by DMY-AgNPs. The zone of inhibition of DMY-AgNPs against A. fumigatus, A. niger, P. formosus, C. albicans, and C. parapsilosis was 17.6, 19.2, 22.2, 15.8, and 18.5 mm. The minimal inhibitory concentration was found to be 0.83, 0.73, 0.67, 0.95, and 0.89 µg mL?1, respectively. This is the first report on DMY-AgNPs as an effective antifungal agent. DMY-AgNPs are a potential alternative to commercially available antifungal fungicidals.  相似文献   

17.
Recombinant Escherichia coli cells harboring nitrilase from Alcaligenes faecalis were immobilized using tris(hydroxymethyl)phosphine (THP) as the coupling agent. The optimal pH and temperature of the THP-immobilized cells were determined at pH 8.0 and 55 °C. The half-lives of THP-immobilized cells measured at 35, 40, and 50 °C were 1800, 965, and 163 h, respectively. The concentration of R-mandelic acid (R-MA) reached 358 mM after merely 1-h conversion by the immobilized cells with 500 mM R,S-mandelonitrile (R,S-MN), affording the highest productivity of 1307 g L?1 day?1 and the space-time productivity of 143.2 mmol L?1 h?1 g?1. The immobilized cells with granular shape were successfully recycled for 60 batches using 100 mM R,S-MN as substrate at 40 °C with 64% of relative activity, suggesting that the immobilized E. coli cells obtained in this study are promising for the production of R-MA.  相似文献   

18.
A novel, rapid and specific ultra performance liquid chromatography-photo diode array detection method was developed for the simultaneous determination of 2,3,5,4′-tetrahydroxystilbene-2-O-β-d-glucoside (TSG), emodin-8-O-β-d-glucoside (EMG), emodin (EM) and physcion (PS). The chromatographic separation was performed on an Acquity BEH C18 column (100 × 2.1 mm i.d., 1.7 μm). The mobile phase was a mixture of 0.3% acetic acid–water and 0.3% acetic acid–acetonitrile employing gradient elution at the flow rate of 0.4 mL min?1. The four compounds behaved linearly in the concentration range between 60.80–3040.00 μg mL?1 (TSG), 0.50–25.00 μg mL?1 (EMG), 2.16–108.00 μg mL?1 (EM) and 1.56–78.00 μg mL?1 (PS), respectively with correlation coefficients >0.999. The precision of the method were below 5% RSD. Recoveries of the four compounds ranged from 95.71 to 102.97%, with RSD values less than 2%.  相似文献   

19.
A novel cyclopropane derivative, 1-cyano-N-p-tolylcyclopropanecarboxamide (C12H12N2O, Mr = 200.24) was synthesized and its structure was studied by X-ray diffraction, FTIR, 1H and 13C NMR spectrum and MS. The crystals are monoclinic, space group P2_1/c with a = 7.109 (4), b = 13.758 (7), c = 11.505 (6) Å, α = 90.00, β = 102.731 (8), γ = 90.00 °, V = 1097.6 (9) Å3, Z = 4, F(000) = 312, D c  = 1.212 g/cm3, μ = 0.0800 mm?1, the final R = 0.0490 and wR = 0.1480 for 1,375 observed reflections with I > 2σ(I). A total of 6,109 reflections were collected, of which 2,290 were independent (R int = 0.0290). Theoretical calculation of the title compound was carried out with HF/6-31G (d,p), B3LYP/6-31G (d,p), MP2/6-31G (d,p). The full geometry optimization was carried out using 6-31G(d,p) basis set, and the frontier orbital energy. Atomic net charges were discussed, and the structure-activity relationship was also studied. The preliminary biological test showed that the synthesized compound is bioactive against the KARI of Escherichia coli.  相似文献   

20.
Xanthine oxidase (XOD) catalyzes the metabolism of hypoxanthine and xanthine to uric acid, the overproduction of which could cause hyperuricemia, a risk factor for gout. Inhibition of XOD is a major treatment for gout, and biflavonoids have been found to act as XOD-inhibitory compounds. In this study, ultrafiltration liquid chromatography with photodiode-array detection coupled to electrospray-ionization tandem mass spectrometry (UF-LC-PDA–ESI-MS) was used to screen and identify XOD inhibitors from S. tamariscina. High-performance counter-current chromatography (HPCCC) was used to separate and isolate the active constituents of these XOD inhibitors. Furthermore, ultrahigh-performance liquid chromatography (UPLC) and triple-quadrupole mass spectrometry (TQ-MS) was used to determine the XOD-inhibitory activity of the obtained XOD inhibitors, and enzyme kinetics was performed with Lineweaver–Burk (LB) plots using xanthine as the substrate. As a result, two compounds in S. tamariscina were screened as XOD inhibitors: 65.31 mg amentoflavone and 0.76 mg robustaflavone were isolated from approximately 2.5 g?S. tamariscina by use of HPCCC. The purities of the two compounds obtained were over 98 % and 95 %, respectively, as determined by high-performance liquid chromatography (HPLC). Lineweaver–Burk plot analysis indicated that amentoflavone and robustaflavone were non-competitive inhibitors of XOD, and the IC 50 values of amentoflavone and robustaflavone for XOD inhibition were 16.26 μg mL?1 (30.22 μmol L?1) and 11.98 μg mL?1 (22.27 μmol L?1), respectively. The IC 50 value of allopurinol, used as the standard, was 7.49 μg mL?1 (46.23 μmol L?1). The results reveal that the method for systematic screening, identification, and isolation of bioactive components in S. tamariscina and for detecting their inhibitory activity using ultrafiltration LC–ESI-MS, HPCCC, and UPLC–TQ-MS is feasible and efficient, and could be expected to extend to screening and separation of other enzyme inhibitors. Graphical Abstract
?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号