首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sonoporation, ultrasound-mediated membrane perforation can potentially puncture plasma membrane and rigid cell wall on presumably reversible basis which benefit gene transfection and plant biotechnology. Herein, positively charged poly-ethyleneimine (PEI)-coated mesoporous silica nanoparticles (MSNs) with an average diameter of 100 ± 8.7 nm was synthesized for GUS-encoding plasmid delivery into the suspended tobacco cells using the ultrasound treatment. The overall potential of PEI-MSN for DNA adsorption was measured at 43.43 μg DNA mg−1 PEI-MSNs. It was shown that high level of sonoporation may adversely upset the cell viability. Optimal conditions of ultrasonic treatment are obtained as 8 min at 3 various intensities of 160, 320 and 640 W. Histochemical staining assay was used to follow the protein expression. It was shown that PEI-coated MSNs efficiently transfer the GUS-encoding plasmid DNA into the tobacco cells. The results of this study showed that ultrasonic treatment provides an economical and straightforward approach for gene transferring into the plant cells without any need to complicated devices and concerns about safety issues.  相似文献   

2.
The rapid, robust, scalable and non-hazardous sonochemical approach for in situ reduction and direct functionalization of graphene oxide has been developed for non-toxic biomedical applications. The graphene oxide (GrO) was directly functionalized with tryptamine (TA) without using any hazardous acylating and coupling reagents. The reaction was completed within 20 min. An impact of ultrasound was inferred for a direct functionalization with other conventional methods. The evolved electronic states were confirmed with near edge X-ray absorption fine structure (NEXAFS). The direct covalent functionalization and formation of f-(TA) GrO was proven with FTIR, 13C solid state NMR, XPS, XRD, Raman‚ HRTEM, AFM and TGA. The total percentage weight loss in TGA confirms an enhanced thermal stability of f-(TA) GrO. The f-(TA) GrO was further explored for an investigation of in vitro antimicrobial activity to ensure the health and environmental safety. An outstanding antibacterial activity of f-(TA) GrO was found against gram positive Staphylococcus aureus at MIC 128 mg mL−1. It confirms a suitability of f-(TA) GrO for thermally stable antibacterial coating. The f-(TA) GrO showed 39.14–48.9% antioxidant activities, evaluated with 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical assay. The inherent cytotoxicity of f-(TA) GrO was evaluated with SRB assay to living cells, MCF-7 and Vero. The estimated cell viabilities were >80% upon addition of f-(TA) GrO over a wide concentration range of 10–80 μg mL−1. The high cytocompatibility of f-(TA) GrO confirms the low toxicity and an excellent biocompatibility. The morphological effect on Vero cell line, evidently confirmed the biocompatibility of f-(TA) GrO. Therefore, f-(TA) GrO was emerged as an advanced functional biomaterial for thermal and biomedical applications.  相似文献   

3.
To produce an edible film with high mechanical and physicochemical properties, Tuna skin collagen-chitosan (TSC-CTS) composite films were prepared by incorporating ultrasound (UT) and pomegranate polyphenols including gallic acid (GA), tannic acid (TA), and ellagic acid (EA), respectively. The tensile strength and the DPPH scavenging activity of the GA-UT-TSC-CTS film (ultrasound frequency of 28 ± 0.5 kHz, power of 100 W/L, sweep frequency cycle of 100 ms, duty ratio of 77% and time of 10 min; GA concentration of 1.0 g/L and reaction time of 10 min) were increased by 47.03% and 24.16 folds, respectively compared to the control (TSC-CTS film). Meanwhile, light transmittance and water vapor permeability of the GA-UT-TSC-CTS film were decreased by 29.26% and 15.70%, respectively. These positive modification results were attributed to the altered structure during the film formation process, which were verified by Fourier transform infrared spectroscopy (FTIR), circular dichroism (CD), X-ray diffraction (XRD), and thermogravimetry results. Moreover, the GA-UT-TSC-CTS film possessed moderate thermal stability and color indexes and improved antibacterial activity. The antibacterial effect of the film against Bacillus subtilis was the highest, followed by Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus. Overall, the combination modification of gallic acid and ultrasound was an efficient modification method to improve the mechanical, antioxidant, and antibacterial properties of edible TSC-CTS films.  相似文献   

4.
As a basic technique of molecular cloning, bio-transformation has been successfully used in the fields of biomedicine and food processing. In this study, we established a transformation system of exogenous DNA into E. coli cells mediated by ultrasound. Under the optimal conditions (i.e. 35 °C, 40 W, 25 s, OD600 = 0.4–0.6) optimized by RSM, the transformation efficiency reached at 1.006 × 107 CFU/μg DNA. The results of membrane permeability, macromolecular substance and cell structure analysis before and after ultrasound treatment showed that the damage of host cells induced by lower (40 W) ultrasound and shorter ultrasound time (25 s) was reversible, and the transformation efficiency and cell survival rate were not significantly affected under this condition. In brief, proper changes in cell membrane and cell wall were the basic conditions for host cells to uptake exogenous DNA, while, whether exogenous DNA could be replicated and expressed in cells depends on the viability of host cells.  相似文献   

5.
《Current Applied Physics》2014,14(5):809-813
In this work, 0.96(K0.48Na0.52)1−xLixNbO3–0.04Bi0.5Na0.5ZrO3 lead-free piezoceramics were prepared using the conventional solid state reaction method in order to attain both a high TC and an enhanced d33. The effect of Li content on their phase structure, electrical properties, and stability was systematically investigated. These results indicate that adding Li could result in the increase of TC and the decrease of TO–T. Here we obtain the ceramics with an orthogonal–tetragonal phase boundary in the composition of x = 0.02, and then enhanced piezoelectric properties and a high Curie temperature (i.e., d33 ∼ 255 pC/N, kp ∼ 41%, and TC ∼ 360 °C) were observed, showing the realization of our objective. In addition, a good stability of piezoelectric and ferroelectric properties has been shown in such a material system.  相似文献   

6.
In this study, liquid–liquid interfacial protein adsorption was proposed as a means of inactivating soy trypsin inhibitors (TIs, including Kunitz (KTI) and Bowman-Birk inhibitor (BBI)). Hexane-water was first selected as a model system to compare three emulsification methods (hand shaking, rotor–stator and ultrasound mixing). Ultrasound could generate the smallest and least polydisperse emulsion droplets, resulting in highest interfacial adsorption amount of KTI and BBI as well as the highest inactivation percentage of TIs (p < 0.05). Therefore, ultrasound was selected to further explore the effect of the non-aqueous phase on interfacial adsorption and inactivation kinetics of TIs in a food emulsion system containing vegetable oil (VTO). The adsorption amounts of KTI and BBI in the VTO-aqueous emulsion increased by ∼ 25 % compared to the hexane-aqueous emulsion. In addition, the adsorption amounts of KTI and BBI were rapidly increased as a function of sonication time, especially for the hexane-aqueous emulsion system. This result suggests that such inactivation of TIs could be implemented in continuous systems for large-scale processing. Finally, the pathways of interface-induced inactivation of BBI and KTI were investigated based on separate experiments on individual BBI and KTI systems. The results showed that the interface adsorption caused the changes in the secondary and tertiary structure of KTI that led to its activitation. However, BBI was quite stable at the liquid–liquid interface without significant conformational change. Overall, ultrasound-assisted interfacial adsorption can be considered a rapid and highly efficient method to inactivate KTI.  相似文献   

7.
In this study, the effects of ultrasound treatment on the texture, physicochemical properties and protein structure of composite gels prepared by salted egg white (SEW) and cooked soybean protein isolate (CSPI) at different ratios were investigated. With the increased SEW addition, the ζ-potential absolute values, soluble protein content, surface hydrophobicity and swelling ratio of composite gels showed overall declining trends (P < 0.05), while the free sulfhydryl (SH) contents and hardness of exhibited overall increasing trends (P < 0.05). Microstructural results revealed that composite gels exhibited denser structure with the increased SEW addition. After ultrasound treatment, the particle size of composite protein solutions significantly decreased (P < 0.05), and the free SH contents of ultrasound-treated composite gels were lower than that of untreated composite gels. Moreover, ultrasound treatment enhanced the hardness of composite gels, and promoted the conversion of free water into non-flowable water. However, when ultrasonic power exceeded 150 W, the hardness of composite gels could not be further enhanced. FTIR results indicated that ultrasound treatment facilitated the composite protein aggregates to form a more stable gel structure. The improvement of ultrasound treatment on the properties of composite gels was mainly by promoting the dissociation of protein aggregates, and the dissociated protein particles further interacted to form denser aggregates through disulfide bond, thus facilitating the crosslinking and reaggregation of protein aggregates to form denser gel structure. Overall, ultrasound treatment is an effective approach to improve the properties of SEW-CSPI composite gels, which can improve the potential utilization of SEW and SPI in food processing.  相似文献   

8.
Cathodoluminescence (CL) has been studied in graphene quantum dots (GQDs) by varying their average size (d) from 5 to 35 nm. The size dependence of CL peak wavelength is very analogous to that of photoluminescence (PL) peak wavelength unusually showing non-monotonic behaviors having a maximum at d = ∼17 nm. The CL behaviors can therefore be attributed to the novel feature of GQDs, i.e., the circular-to-polygonal-shape and corresponding edge-state variations of GQDs at d = ∼17 nm as d increases. However, the peak wavelengths of CL are especially much smaller than those of PL at both ends in the size range of GQDs, possibly resulting from the recombination of the electron-beam-excited e-h pairs at higher energy states before thermalization due to fast carrier-carrier scattering dominating over electron-phonon scattering in graphene.  相似文献   

9.
《Current Applied Physics》2014,14(3):396-402
High performance lead (Pb)-free piezoelectric ceramics with excellent piezoelectric properties is in great demand for sensor and actuator applications. Barium zirconate titanate–barium calcium titanate [xBZT–(1 − x)BCT] (x = 0.5) is one such lead free system, which exhibits high piezoelectric properties similar to lead zirconate titanate (PZT). In this study we report the synthesis and characterization of this lead free [xBZT–(1 − x)BCT] (x = 0.5) via wet chemical sol–gel method. Calcination of the BZT–BCT precursor only at 1000 °C (against 1300 °C reported in the literature) for 4 h resulted in formation of single phase nanoparticles (<50 nm) as confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies. Highly dense and homogenous microstructure with 95% of the theoretical density was obtained by solid-state sintering of the green pellets at 1550 °C. Remanent polarization (Pr) of 11.55 μC/cm2 and relative permittivity of 20,020 at the Curie temperature of 95 °C were obtained. Electrically poled BZT–BCT ceramics samples exhibited high piezoelectric charge coefficients, d33 ∼ 530 pC/N, d33* ∼ 942 pm/V, large electromechanical coupling coefficient kp ∼ 0.45 and a large strain of 0.15%, which are comparable to those of lead based piezoelectric ceramics. The excellent piezoelectric properties of this sol–gel derived BZT–BCT system has been analyzed and correlated to its structure in this report.  相似文献   

10.
Qingke protein rich in restricted amino acids such as lysine, while the uncoordination of ratio of glutenin and gliadin in Qingke protein has a negative impact on its processing properties. In this study, the effect of multiple-frequency ultrasound combined with transglutaminase treatment on the functional and structural properties of Qingke protein and its application in noodle manufacture were investigated. The results showed that compared with the control, ultrasound-assisted transglutaminase dual modification significantly increased the water and oil holding capacity, apparent viscosity, foaming ability, and emulsifying activity index of Qingke protein, which exhibited a higher storage modulus G' (P < 0.05). Meanwhile, ultrasound combined with transglutaminase treatment enhanced the cross-linking degree of Qingke protein (P < 0.05), as shown by decreased free amino group and free sulfhydryl group contents, and increased disulfide bond content. Moreover, after the ultrasound-assisted transglutaminase dual modification treatment, the fluorescence intensity, the contents of α-helix and random coil in the secondary structure of Qingke protein significantly decreased, while the β-sheet content increased (P < 0.05) compared with control. SDS-PAGE results showed that the bands of Qingke protein treated by ultrasound combined with transglutaminase became unclear. Furthermore, the quality of Qingke noodles made with Qingke powder (140 g/kg dual modified Qingke protein mixed with 860 g/kg extracted Qingke starch) and wheat gluten 60–70 g/kg was similar to that of wheat noodles. In summary, multiple-frequency ultrasound combined with transglutaminase dual modification can significantly improve the physicochemical properties of Qingke protein and the modified Qingke proteins can be used as novel ingredients for Qingke noodles.  相似文献   

11.
The effects of two types (energy-divergent/gathered) of ultrasound pretreatment of protein on the Maillard reaction of protein-hydrolysate from grass carp (Ctenopharyngodon idella) were studied. The test and analysis of Fourier transform infrared spectroscopy, surface hydrophobicity and atomic force microscopy of protein, peptide concentration, molecular weight distribution and free amino acid content of protein-hydrolysate were performed to reveal the mechanism. Also, the sensory characteristics of Maillard reaction products were evaluated. Results showed that Maillard reaction products presented higher absorbance value at 294 and 420 nm after pretreated by two types of ultrasound compared to that of control. The grafting degree value of products pretreated by energy-divergent ultrasound increased by 13.87%. Both of these two types of ultrasound pretreatment showed higher (p < 0.05) value of grafting degree compared to that of positive control (thermal denaturation). The random coil content and surface hydrophobicity of protein improved significantly (p < 0.05), and the depth distribution of protein molecules narrowed down after pretreated by ultrasound, especially energy-divergent type ultrasound. The change of protein structure increased small molecular peptide/amino acid content in protein-hydrolysate, so that it promoted the Maillard reaction process of protein-hydrolysate and glucose. The mouthfulness and overall acceptance of Maillard reaction products increased after pretreated by two types of ultrasound. Results indicated that ultrasound, especially energy-divergent type ultrasound pretreatment of protein was an effective method to promote Maillard reaction evolution of protein-hydrolysate from grass carp protein and improved the flavor of Maillard reaction products.  相似文献   

12.
Extracts from medicinal plants are generally obtained by conventional methods like percolation and maceration. Owing to limitations of traditional methods and to meet the rising demand of extracts, the development of new green approaches is need of hour. In the present research, we have developed an ultrasound-assisted extraction (UAE) method for the Nardostachys jatamansi (NJ) D. Don, DC roots and optimized the extraction parameters for possible improved extract yield. A multivariate optimization strategy using the Centre Composite Design coupled with response surface methodology was applied. A numerical optimization approach accurately predicted the extraction conditions (sonication time ∼ 20 min, ethanol ∼ 70 % and a liquid/solid ratio of about 21:1). Scanning electron microscopy of the plant samples after UAE also indicated the cavitation effect due to sound waves. GC–MS analysis of the optimized ultrasound extract (OUNJ) confirmed improvement in the concentration of various secondary metabolites like jatamansone (91.8 % increase), spirojatamol (42.3 % increase), globulol (130.4 % increase), sitosterol (84.6 % increase) as compared to the soxhlet extract (SXNJ). Different anti-oxidant parameters (DPPH, Glutathione, Catalase SOD and NO) were also significantly altered (p < 0.05) in the optimized extracts. The IC50 to inhibit acetylcholinesterase activity (AChE) in vitro and its concentration in brain homogenates were significantly (p < 0.05) improved by OUNJ extract as compared to the SXNJ ones. To conclude, we can say that established optimized conditions for UAE of N. jatamansi roots not only reduce the extraction time but also improved the pharmacological potential of the extracts.  相似文献   

13.
The tenderizing effect of different ultrasound treatments on the characteristics of muscle fibers and connective tissue of chicken gizzard was investigated. It could be concluded that the shear force and muscle fiber diameter of the sample treated with ultrasound for 500 W/30 min were decreased by 27.1% and 26.2%, respectively, while the myofibril fragmentation index (MFI) was increased by 238.1% than the control. More importantly, the contents of hydroxylysine pyridinoline and lysine pyridinoline of the samples treated with ultrasound for 500 W/30 min were 23.1% and 40.5% lower than those of the control. Tenderizing effect of 500 W/30 min sample on thermal stability was verified from the decrease in transition temperature (Tmax) (10.7%) and enthalpy (ΔH) (21.7%) of collage compared with the control. In general, proper ultrasound treatment could effectively improve the tenderness of gizzard, and 500 W/30 min had the best tenderization effect. Therefore, the treatment of ultrasound was considered as a promising and efficient technique in meat processing, especially for the meat tenderization.  相似文献   

14.
In this study, the influence of multi-frequency ultrasound irradiation on the functional properties and structural characteristics of gluten, as well as the textural and cooking characteristics of the noodles were investigated. Results showed that the textural and cooking characteristics of noodles that contain less gluten pretreated by multi-frequency ultrasonic were ultrasonic frequency dependent. Moreover, the noodles that contain a smaller amount of sonicated gluten could achieve the textural and cooking quality of commercial noodles. There was no significant difference in the cooking and texture characteristics between commercial noodles and noodles with 12%, 11%, and 10% gluten pretreated by single-frequency (40 kHz), dual-frequency (28/40 kHz), and triple-frequency sonication (28/40/80 kHz), respectively. Furthermore, the cavitation efficiency of triple-frequency ultrasound was greater than that of dual-frequency and single-frequency. As the number of ultrasonic frequencies increased, the solubility, water holding capacity and oil holding capacity of gluten increased significantly (p < 0.05), and the particle size was reduced from 197.93 ± 5.28 nm to 110.15 ± 2.61 nm. Furthermore, compared to the control group (untreated), the UV absorption and fluorescence intensity of the gluten treated by multi-frequency ultrasonication increased. The surface hydrophobicity of gluten increased from 8159.1 ± 195.87 (untreated) to 11621.5 ± 379.72 (28/40/80 kHz). Raman spectroscopy showed that the α-helix content of all sonicated gluten protein samples decreased after sonication, while the β-sheet and β-turn content increased, and tryptophan and tyrosine residues were exposed. Through scanning electron microscope (SEM) analysis, the gluten protein network structure after ultrasonic treatment was loose, and the pore size of the gluten protein network increased from about 10 μm (untreated) to about 26 μm (28/40/80 kHz). This work elucidated the effect of ultrasonic frequency on the performance of gluten, indicating that with increasing frequency combination increases, the ultrasound effect became more pronounced and protein unfolding increased, thereby impacting the functional properties and the quality of the final product. This study provided a theoretical basis for the application of multi-frequency ultrasound technology in the modification of gluten protein and noodle processing.  相似文献   

15.
The objective of this study is to explore the effect and mechanism of ultrasound on chitin extraction from shrimp shells powder (SSP) by the co-fermentation of Bacillus subtilis and Acetobacter pasteurianus. After pre-treating the SSP with high-intensity ultrasound (HIU) at 800 W, the protease activity in the fermentation solution reached 96.9 U/mL on day 3, which was significantly higher than for SSP that had not been pre-treated with ultrasound (81.8 U/mL). The fermentation time of the chitin extraction process was 5.0 d without ultrasound pre-treatment, while it was shortened to 4.5 d when using ultrasound at 800 W to treat SSP. However, there were no obvious differences when we applied ultrasound at low power (200 W, 400 W). Furthermore, chitin purified from shrimp shells pre-treated with HIU at 800 W exhibited lower molecular weight (11.2 kDa), higher chitin purity (89.8%), and a higher degree of deacetylation (21.1%) compared to SSP with no ultrasound pre-treatment (13.5 kDa, 86.6%, 18.5%). Results indicate that HIU peels off the protein/CaCO3 matrix that covers the SSP surface. About 9.1% of protein and 4.7% of Ca2+ were released from SSP pre-treated with HIU at 800 W. These figures were both higher than with no ultrasound pre-treatment (4.5%, 3.2%). Additionally, the amount of soluble protein extracted from SSP through HIU at 800 W was 50% higher than for the control sample. SDS-PAGE analysis indicated that the soluble protein was degraded to the micromolecule. It also revealed that HIU (600, 800 W) induced the secondary and tertiary structure destruction of protein extracted from SSP. In conclusion, HIU-induced degradation and structural damage of protein enhances the protein/CaCO3 matrix to be peeled off from SSP. Also, in the co-fermentation process, an increase of protease activity further accelerates deproteinization.  相似文献   

16.
With the steady increase in the consumption of ultra-processed foods, there is growing interest in sustainable diets that include more plant protein. However, little information is available regarding the structural and functional properties of cactus (Opuntia ficus-indica) seed protein (CSP), a by-product of the cactus seed food-processing chain. This study aimed to explore the composition and nutritional value of CSP and reveal the effects of ultrasound treatment on protein quality. Protein chemical structure analysis showed that an appropriate intensity of ultrasound treatment (450 W) could significantly increase protein solubility (96.46 ± 2.07%) and surface hydrophobicity (13.76 ± 0.85 μg), decrease the content of T-SH (50.25 ± 0.79 μmol/g) and free-SH (8.60 ± 0.30 μmol/g), and enhance emulsification characteristics. Circular dichroism analysis further confirmed that the ultrasonic treatment increased the α-helix and random coil content. Amino acid analysis also suggested that ultrasound treatment (450 W) increased the hydrophobic amino acid content. To evaluate the impact of changes in the chemical structure, its digestion behavior was studied. The results showed that ultrasound treatment increased the release rate of free amino acids. Furthermore, nutritional analysis showed that the digestive products of CSP by ultrasound treatment can significantly enhance the intestinal permeability, increase the expression of ZO-1, Occludin and Claudin-1, thus repairing LPS induced intestinal barrier disfunction. Hence, CSP is a functional protein with high value, and ultrasound treatment is recommended. These findings provide new insights into the comprehensive utilization of cactus fruits.  相似文献   

17.
We theoretically study the electronic conductance G and the current–voltage characteristics of two quantum interference transistors in parallel and in series. We use two different definitions of conductance,G  T and G  T / R. Neither can reproduce the classical additivity law in the case of coherent transport due to quantum interference for the elements in series and quasibound states when elements are in parallel. In the case of two transistors in series, we find that the quantityT / R only qualitatively better represents the additivity law, which is probably expected because this model avoids counting the contact resistance twice. However, for the parallel configuration of transistors, the conductance is almost additive for the majority of energies when G  T, except for the single-mode regime. Possible use of these configurations in digital electronics for basic logic functions is discussed.  相似文献   

18.
Tuberculosis is an infectious disease caused by the bacterium M. tuberculosis. The aim of this study was to investigate the bactericidal effect and underlying mechanisms of low-frequency and low-intensity ultrasound combined with levofloxacin treatment against M. smegmatis (a surrogate of M. tuberculosis). As part of this study, M. smegmatis was continuously irradiated with low frequency ultrasound (42 kHz) using several different doses whereby both intensity (0.138, 0.190 and 0.329 W/cm2) and exposure time (5, 15 and 20 min) were varied. Flow cytometric analyses revealed that the permeability of M. smegmatis increased following ultrasound exposure. The survival rate, structure and morphology of bacteria in the lower-dose (ISATA = 0.138 W/cm2 for 5 min) ultrasound group displayed no significant differences upon comparison with the untreated group. However, the survival rate of bacteria was significantly reduced and the bacterial structure was damaged in the higher-dose (ISATA = 0.329 W/cm2 for 20 min) ultrasound group. Ultrasound irradiation (0.138 W/cm2) was subsequently applied to M. smegmatis in combination with levofloxacin treatment for 5 min. The results demonstrated that the bactericidal effect of ultrasonic irradiation combined with levofloxacin is higher compared to ultrasound alone or levofloxacin alone.  相似文献   

19.
Self-assembly of soy proteins into nanofibrils is gradually considered as an effective method to improve their technical and functional properties. Ultrasound is a non-thermal, non-toxic and environmentally friendly technology that can modulate the formation of protein nanofibrils through controlled structural modification. In this research, the effect of ultrasound pretreatment on soy protein isolate nanofibrils (SPIN) was evaluated by fibrillation kinetics, physicochemical properties and structure characteristics. The results showed that the optimum ultrasound condition (20% amplitude, 15 min, 5 s on-time and 5 s off-time) could increase the formation rate of SPIN by 38.66%. Ultrasound reduced the average particle size of SPIN from 191.90 ± 5.40 nm to 151.83 ± 3.27 nm. Ultrasound could increase the surface hydrophobicity to 1547.67 in the initial stage of nanofibrils formation, and extend the duration of surface hydrophobicity increased, indicating ultrasound could expose more binding sites, creating more beneficial conditions for nanofibrils formation. Ultrasound could change the secondary and tertiary structure of SPIN. The reduction of α-helix content of ultrasound-pretreated soy protein isolate nanofibrils (USPIN) was 12.1% (versus 5.3% for SPIN) and the increase of β-sheet content was 5.9% (versus 3.5% for SPIN) during fibrillation. Ultrasound could accelerate the formation of SPIN by promoting the unfolding of SPI, exposure of hydrophobic groups and formation of β-sheets. Microscopic images revealed that USPIN generated a curlier and looser shape. And ultrasound reduced the zeta potential, free sulfhydryl groups content and viscosity of SPIN. SDS-PAGE results showed that ultrasound could promote the conversion of SPI into low molecular weight peptides, providing building blocks for the nanofibrils formation. The results indicated that ultrasound pretreatment could be a promising technology to accelerate SPIN formation and promote its application in food industry, but further research is needed for the improvement of the functional properties of SPIN.  相似文献   

20.
This study investigated the effects of ultrasound treatment on the quality of salted Culter alburnus fish. The results showed that with the increasing ultrasound power, the structural degradation of muscle fibers was intensified, and the conformation of myofibrillar protein was significantly changed. The high-power ultrasound treatment group (300 W) had relatively higher thiobarbiturate reactive substance content (0.37 mg malondialdehyde eq/kg) and peroxidation value (0.63 mmol/kg). A total of 66 volatile compounds were identified with obvious differences among groups. The 200 W ultrasound group exhibited fewer fishy substances (Hexanal, 1-Pentene-3-ol, and 1-Octane-3-ol). Compared with control group, ultrasound groups (200, 300 W) contained more umami taste-related amino peptides such as γ-Glu-Met, γ-Glu-Ala, and Asn-pro. In the ultrasound treatment group, L-isoleucine and L-methionine, which may be used as flavor precursors, were significantly down-regulated, while carbohydrates and its metabolites were up-regulated. Amino acid, carbohydrate, and FA (fatty acyls) metabolism products in salted fish were enriched by ultrasound treatment, and those products might ultimately be related to the taste and flavor of salted fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号