首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Summary This paper extends the Francis QR algorithm to quaternion and antiquaternion matrices. It calculates a quaternion version of the Schur decomposition using quaternion unitary similarity transformations. Following a finite step reduction to a Hessenberg-like condensed form, a sequence of implicit QR steps reduces the matrix to triangular form. Eigenvalues may be read off the diagonal. Eigenvectors may be obtained from simple back substitutions. For serial computation, the algorithm uses only half the work and storage of the unstructured Francis QR iteration. By preserving quaternion structure, the algorithm calculates the eigenvalues of a nearby quaternion matrix despite rounding errors.  相似文献   

2.
The implicit Q theorem for Hessenberg matrices is a widespread and powerful theorem. It is used in the development of, for example, implicit QR algorithms to compute the eigendecomposition of Hessenberg matrices. Moreover it can also be used to prove the essential uniqueness of orthogonal similarity transformations of matrices to Hessenberg form. The theorem is also valid for symmetric tridiagonal matrices, proving thereby also in the symmetric case its power. Currently there is a growing interest to so-called semiseparable matrices. These matrices can be considered as the inverses of tridiagonal matrices. In a similar way, one can consider Hessenberg-like matrices as the inverses of Hessenberg matrices. In this paper, we formulate and prove an implicit Q theorem for the class of Hessenberg-like matrices. We introduce the notion of strongly unreduced Hessenberg-like matrices and also a method for transforming matrices via orthogonal transformations to this form is proposed. Moreover, as the theorem is valid for Hessenberg-like matrices it is also valid for symmetric semiseparable matrices. The research was partially supported by the Research Council K.U.Leuven, project OT/00/16 (SLAP: Structured Linear Algebra Package), by the Fund for Scientific Research–Flanders (Belgium), projects G.0078.01 (SMA: Structured Matrices and their Applications), G.0176.02 (ANCILA: Asymptotic aNalysis of the Convergence behavior of Iterative methods in numerical Linear Algebra), G.0184.02 (CORFU: Constructive study of Orthogonal Functions) and G.0455.0 (RHPH: Riemann-Hilbert problems, random matrices and Padé-Hermite approximation), and by the Belgian Programme on Interuniversity Poles of Attraction, initiated by the Belgian State, Prime Minister’s Office for Science, Technology and Culture, project IUAP V-22 (Dynamical Systems and Control: Computation, Identification & Modelling). This research was partially supported by by MIUR, grant number 2004015437 (third author). The scientific responsibility rests with the authors.  相似文献   

3.
Minimal residual methods, such as MINRES and GMRES, are well-known iterative versions of direct procedures for reducing a matrix to special condensed forms. The method of reduction used in these procedures is a sequence of unitary similarity transformations, while the condensed form is a tridiagonal matrix (MINRES) or a Hessenberg matrix (GMRES). The algorithm CSYM proposed in the 1990s for solving systems with complex symmetric matrices was based on the tridiagonal reduction performed via unitary congruences rather than similarities. In this paper, we construct an extension of this algorithm to the entire class of conjugate-normal matrices. (Complex symmetric matrices are a part of this class.) Numerical results are presented. They show that, on many occasions, the proposed algorithm has a superior convergence rate compared to GMRES.  相似文献   

4.
In this article the unitary equivalence transformation of normal matrices to tridiagonal form is studied.It is well-known that any matrix is unitarily equivalent to a tridiagonal matrix. In case of a normal matrix the resulting tridiagonal inherits a strong relation between its super- and subdiagonal elements. The corresponding elements of the super- and subdiagonal will have the same absolute value.In this article some basic facts about a unitary equivalence transformation of an arbitrary matrix to tridiagonal form are firstly studied. Both an iterative reduction based on Krylov sequences as a direct tridiagonalization procedure via Householder transformations are reconsidered. This equivalence transformation is then applied to the normal case and equality of the absolute value between the super- and subdiagonals is proved. Self-adjointness of the resulting tridiagonal matrix with regard to a specific scalar product is proved. Properties when applying the reduction on symmetric, skew-symmetric, Hermitian, skew-Hermitian and unitary matrices and their relations with, e.g., complex symmetric and pseudo-symmetric matrices are presented.It is shown that the reduction can then be used to compute the singular value decomposition of normal matrices making use of the Takagi factorization. Finally some extra properties of the reduction as well as an efficient method for computing a unitary complex symmetric decomposition of a normal matrix are given.  相似文献   

5.
This paper describes the use of a generalized isometric Arnoldi algorithm to reduce a unitary matrix, via unitary similarity, to a product of elementary reflectors and permutations. The computation is analogous to the reduction of a unitary matrix to a unitary Hessenberg matrix using the isometric Arnoldi algorithm. In the case in which A is a shift matrix, the reduction provides a novel recurrence for the factor R in the QR factorization of a Toeplitz-like matrix.  相似文献   

6.
In this paper we describe an orthogonal similarity transformation for transforming arbitrary symmetric matrices into a diagonal-plus-semiseparable matrix, where we can freely choose the diagonal. Very recently an algorithm was proposed for transforming arbitrary symmetric matrices into similar semiseparable ones. This reduction is strongly connected to the reduction to tridiagonal form. The class of semiseparable matrices can be considered as a subclass of the diagonalplus- semiseparable matrices. Therefore we can interpret the proposed algorithm here as an extension of the reduction to semiseparable form. A numerical experiment is performed comparing thereby the accuracy of this reduction algorithm with respect to the accuracy of the traditional reduction to tridiagonal form, and the reduction to semiseparable form. The experiment indicates that all three reduction algorithms are equally accurate. Moreover it is shown in the experiments that asymptotically all the three approaches have the same complexity, i.e. that they have the same factor preceding the n3 term in the computational complexity. Finally we illustrate that special choices of the diagonal create a specific convergence behavior. The research was partially supported by the Research Council K.U.Leuven, project OT/05/40 (Large rank structured matrix computations), by the Fund for Scientific Research–Flanders (Belgium), projects G.0078.01 (SMA: Structured Matrices and their Applications), G.0176.02 (ANCILA: Asymptotic aNalysis of the Convergence behavior of Iterative methods in numerical Linear Algebra), G.0184.02 (CORFU: Constructive study of Orthogonal Functions) and G.0455.0 (RHPH: Riemann-Hilbert problems, random matrices and Padé-Hermite approximation), and by the Belgian Programme on Interuniversity Poles of Attraction, initiated by the Belgian State, Prime Minister's Office for Science, Technology and Culture, project IUAP V-22 (Dynamical Systems and Control: Computation, Identification & Modelling). The scientific responsibility rests with the authors.  相似文献   

7.
In studying the reduction of a complex n × n matrix A to its Hessenberg form by the Arnoldi algorithm, T. Huckle discovered that an irreducible Hessenberg normal matrix with a normal leading principal m × m submatrix, where 1 < m < n, actually is tridiagonal. We prove a similar assertion for the conjugate-normal matrices, which play the same role in the theory of unitary congruences as the conventional normal matrices in the theory of unitary similarities. This fact is stated as a purely matrix-theoretic theorem, without any reference to Arnoldi-like algorithms. Bibliography: 2 titles. __________ Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 346, 2007, pp. 21–25.  相似文献   

8.
This paper concerns two topics: (1) minimal factorizations in the class ofJ-unitary rational matrix functions on the unit circle and (2) completions of contractive rational matrix functions on the unit circle to two by two block unitary rational matrix functions which do not increase the McMillan degree. The results are given in terms of a special realization which does not require any additional properties at zero and at infinity. The unitary completion result may be viewed as a generalization of Darlington synthesis.  相似文献   

9.
We show that any n × n conjugate-normal matrix can be brought by a unitary congruence transformation to block-tridiagonal form with the orders of the consecutive diagonal blocks not exceeding 1, 2, 3, ..., respectively. The proof is constructive; namely, a finite process is described that implements the reduction to the desired form. Sufficient conditions are indicated for the orders of the diagonal blocks to stabilize. In this case, the condensed form is a band matrix.  相似文献   

10.
There are well-known conditions ensuring that a complex n × n matrix A can be converted by a similarity transformation into a real matrix. Is it possible to realize this conversion via unitary similarity rather than a general one? The following answer to this question is given in this paper: A matrix AM n (?) can be made real by a unitary similarity transformation if and only if A and ā are unitarily similar and the matrix P transforming A into ā can be chosen unitary and symmetric at the same time. Effective ways for verifying this criterion are discussed.  相似文献   

11.
We present an integer rank reduction formula for transforming the rows and columns of an integer matrix A. By repeatedly applying the formula to reduce rank, an extended integer rank reducing process is derived. The process provides a general finite iterative approach for constructing factorizations of A and A T under a common framework of a general decomposition V T AP?=?Ω. Then, we develop the integer Wedderburn rank reduction formula and its integer biconjugation process. Both the integer biconjugation process associated with the Wedderburn rank reduction process and the scaled extended integer Abaffy–Broyden–Spedicato (ABS) class of algorithms are shown to be in the integer rank reducing process. We also show that the integer biconjugation process can be derived from the scaled integer ABS class of algorithms applied to A or A T . Finally, we show that the integer biconjuagation process is a special case of our proposed ABS class of algorithms for computing the Smith normal form.  相似文献   

12.
The problem of cancelling a specified part of the zeros of a completely general rational matrix function by multiplication with an appropriate invertible rational matrix function is investigated from different standpoints. Firstly, the class of all factors that dislocate the zeros and feature minimal McMillan degree are derived. Further, necessary and sufficient existence conditions together with the construction of solutions are given when the factor fulfills additional assumptions like being J-unitary, or J-inner, either with respect to the imaginary axis or to the unit circle. The main technical tool are centered realizations that deliver a sufficiently general conceptual support to cope with rational matrix functions which may be polynomial, proper or improper, rank deficient, with arbitrary poles and zeros including at infinity. A particular attention is paid to the numerically-sound construction of solutions by employing at each stage unitary transformations, reliable numerical algorithms for eigenvalue assignment and efficient Lyapunov equation solvers.  相似文献   

13.
Numerical algorithms with complexityO(n 2) operations are proposed for solving matrix Nehari and Nehari-Takagi problems withn interpolation points. The algorithms are based on explicit formulas for the solutions and on theorems about cascade decomposition of rational matrix function given in a state space form. The method suggests also fast algorithms for LDU factorizations of structured matrices. The numerical behavior of the designed algorithms is studied for a wide set of examples.  相似文献   

14.
A new iterative scheme is described for the solution of large linear systems of equations with a matrix of the form A = ρU + ζI, where ρ and ζ are constants, U is a unitary matrix and I is the identity matrix. We show that for such matrices a Krylov subspace basis can be generated by recursion formulas with few terms. This leads to a minimal residual algorithm that requires little storage and makes it possible to determine each iterate with fairly little arithmetic work. This algorithm provides a model for iterative methods for non-Hermitian linear systems of equations, in a similar way to the conjugate gradient and conjugate residual algorithms. Our iterative scheme illustrates that results by Faber and Manteuffel [3,4] on the existence of conjugate gradient algorithms with short recurrence relations, and related results by Joubert and Young [13], can be extended.  相似文献   

15.
A new method for the construction of bivariate matrix valued rational interpolants (BGIRI) on a rectangular grid is presented in [6]. The rational interpolants are of Thiele-type continued fraction form with scalar denominator. The generalized inverse introduced by [3]is gen-eralized to rectangular matrix case in this paper. An exact error formula for interpolation is ob-tained, which is an extension in matrix form of bivariate scalar and vector valued rational interpola-tion discussed by Siemaszko[l2] and by Gu Chuangqing [7] respectively. By defining row and col-umn-transformation in the sense of the partial inverted differences for matrices, two type matrix algorithms are established to construct corresponding two different BGIRI, which hold for the vec-tor case and the scalar case.  相似文献   

16.
When an orthogonal matrix is partitioned into a two-by-two block structure, its four blocks can be simultaneously bidiagonalized. This observation underlies numerically stable algorithms for the CS decomposition and the existence of CMV matrices for orthogonal polynomial recurrences. We discover a new matrix decomposition for simultaneous multidiagonalization, which reduces the blocks to any desired bandwidth. Its existence is proved, and a backward stable algorithm is developed. The resulting matrix with banded blocks is parameterized by a product of Givens rotations, guaranteeing orthogonality even on a finite-precision computer. The algorithm relies heavily on Level 3 BLAS routines and supports parallel computation.  相似文献   

17.
Summary Fast Givens rotations with half as many multiplications are proposed for orthogonal similarity transformations and a matrix notation is introduced to describe them more easily. Applications are proposed and numerical results are examined for the Jacobi method, the reduction to Hessenberg form and the QR-algorithm for Hessenberg matrices. It can be seen that in general fast Givens rotations are competitive with Householder reflexions and offer distinct advantages for sparse matrices.  相似文献   

18.
An algorithm for computing the complete CS decomposition of a partitioned unitary matrix is developed. Although the existence of the CS decomposition (CSD) has been recognized since 1977, prior algorithms compute only a reduced version. This reduced version, which might be called a 2-by-1 CSD, is equivalent to two simultaneous singular value decompositions. The algorithm presented in this article computes the complete 2-by-2 CSD, which requires the simultaneous diagonalization of all four blocks of a unitary matrix partitioned into a 2-by-2 block structure. The algorithm appears to be the only fully specified algorithm available. The computation occurs in two phases. In the first phase, the unitary matrix is reduced to bidiagonal block form, as described by Sutton and Edelman. In the second phase, the blocks are simultaneously diagonalized using techniques from bidiagonal SVD algorithms of Golub, Kahan, Reinsch, and Demmel. The algorithm has a number of desirable numerical features.   相似文献   

19.
There are several well-known facts about unitary similarity transformations of complex n-by-n matrices: every matrix of order n = 3 can be brought to tridiagonal form by a unitary similarity transformation; if n ≥ 5, then there exist matrices that cannot be brought to tridiagonal form by a unitary similarity transformation; for any fixed set of positions (pattern) S whose cardinality exceeds n(n ? 1)/2, there exists an n-by-n matrix A such that none of the matrices that are unitarily similar to A can have zeros in all of the positions in S. It is shown that analogous facts are valid if unitary similarity transformations are replaced by unitary congruence ones.  相似文献   

20.
In this work a new unitary similarity transformation of a normal matrix to complex symmetric form will be discussed. A constructive proof as well as some properties and examples will be given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号