首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inducible 70 kDa heat shock proteins (Hsp70) in mice are encoded by two almost identical genes, hsp70.1 and hsp70.3. Studies have found that only hsp70.1 is induced by hypertonic stress while both hsp70.1 and hsp70.3 genes are expressed in response to heat shock stress. It is unclear if the human counterparts, hsp70-2 and hsp70-1, are differentially regulated by heat shock and osmotic stress. This study found that only hsp70-2 was induced by hypertonic stress in human embryonic kidney epithelial cells and fibroblasts, while heat shock stress induced both hsp70-1 and hsp70-2. The human hsp70-2 promoter region contains three TonE (tonicity-responsive enhancer) sites, which were reported to play an important role in the response to hypertonicity. When the reporter plasmids containing different parts of the 5' flanking region of hsp70-2 were transfected into human embryonic kidney epithelial cells or fibroblasts, one TonE site at -135 was found to play a key role in the response to hypertonicity. The inactivation of the TonE site using site-directed mutagenesis led to the complete loss of induction by hypertonicity, which demonstrates the essential role of the TonE site. This suggests that the TonE site and the TonEBP (TonE binding protein) are the major regulators for the cellular response against high osmolarity in human kidney tissue.  相似文献   

2.
Induction of apoptosis is a function of external stimuli and cellular gene expression. Many cells respond to DNA damage by the induction of apoptosis, which depends on a functional p53 protein and is signaled by elevation of p53 levels. In this study, we found that a prior exposure to mild stress (42 degrees C) can protect HepG2 (p53+/+) cells from a subsequent UVC-induced apoptosis determined by DNA fragmentation and ratio of sub-G1 peak, but no heat-enhanced protection was found in Hep3B (p53-/-) cells. Although a similar inductive pattern of HSP70 protein and mRNA was detected in the two cell lines under thermal stress, the effect of thermal stress on UVC-induced apoptosis in HepG2 and Hep3B cells was obviously different. Overexpression of HSP70 by transient transfection of HSP70 expression vector in HepG2 cells significantly inhibited UVC-induced cell death; however, this inhibitory effect did not occur in transfected-Hep3B cells. Treatment of HepG2 cells with p53-specific antisense oligonucleotide could effectively block the antiapoptotic effect of thermal stress on UVC-induced apoptosis and increase of intracellular wild-type p53 protein by transfecting wtp53 expression plasmid into Hep3B cells yielded more resistance to UVC irradiation after prior thermal stress exposure. The results reveal an involvement of p53 in the antiapoptotic effect of thermal stress on UVC irradiation. Finally, a p53 protein increase was detected in UVC-treated HepG2 cells and could be coimmunoprecipitated with HSP70 after a thermal stress treatment. Prolonged p53 binding activity and enhanced expression of p53-controlled genes such as G1 arrest and DNA damage 45 and wild-type p53 activation factor 1/Cdk-interacting protein 1 by thermal stress are also observed in UVC-irradiated HepG2 cells. Based on these results, we propose that the antiapoptotic effect of thermal stress is mediated by increasing HSP70 and modulating intracellular p53 function.  相似文献   

3.
4.
Cellular responses to photodynamic therapy (PDT) include induction of heat shock proteins (HSP). We examined meso-tetrahydroxyphenyl chlorin (mTHPC) PDT-mediated HSP activation in EMT6 cells stably transfected with a plasmid containing the gene for green fluorescent protein (GFP) driven by an hsp70 promoter. mTHPC incubation induced concentration-dependent GFP expression. Irradiation of cells exposed to a sensitizer concentration that induced a slight increase in GFP and no loss of cell viability resulted in fluence-dependent GFP accumulation. In response to drug only and to PDT, GFP levels increased to a maximum of four- to five-fold above control levels with increasing drug or fluence and then decreased at higher doses. A trypan blue-exclusion assay confirmed that decreased GFP levels in both cases were due to a loss of cell viability. For initial evaluation in vivo, HSP70/ GFP-transfected EMT6 tumors were grown in BALB/c mice and subjected to mTHPC-PDT with a fluence of 1 J/cm2. Six hours after PDT, GFP fluorescence was imaged in these tumors through the intact skin in vivo. These results indicate that sublethal doses of mTHPC-PDT stimulate GFP expression under the control of an hsp70 promoter and illustrate the potential of noninvasively monitoring reporter protein fluorescence as a measure of molecular response to PDT.  相似文献   

5.
6.
Huntington's disease is caused by CAG trinucleotide expansions in the gene encoding huntingtin. N- terminal fragments of huntingtin with polyglutamine produce aggregates in the endosome-lysosomal system, where proteolytic fragments of huntingtin is generated. Heat shock protein 70 (HSP70) prevents the formation of protein aggregates, but the effect of HSP70 on the huntingtin in the endosome-lysosomal system is unknown. This study was to determine whether HSP70 alters the distribution of huntingtin in endosome-lysosomal system. HSP70 expressing stable cells (NIH/3T3 or cerebral hybrid cell line A1) were generated, and mutant [(CAG)(100)] huntingtin was transiently overexpressed. Analysis of subcellular distribution by immunocytochemistry or proteolysis cleavage by Western blotting was performed. 18 CAG repeat wild type [WT; (CAG)(18)] huntingtin was used as a control. Cells with huntingtin showed patterns of endosome-lysosomal accumulation, from a "dispersed vacuole (DV)" type into a coalescent "perinuclear vacuole (PV)" type over time. In WT huntingtin, HSP70 increased the cells with the PV types that enhanced the proteolytic cleavage of huntingtin. However, HSP70 reduced cells of the DV and PV types expressing mutant huntingtin, that result in less proteolysis than that of control. In addition, intranuclear inclusions were formed only in mutant cells, which was not affected by HSP70. These results suggest that HSP70 alters the distribution of huntingtin in the endosome- lysosomal system, and that this contributes to huntingtin proteolysis.  相似文献   

7.
8.
Abstract— We investigated the induction, cellular localization and phosphorylation of a low-molecular weight stress protein (heat shock protein 27, HSP27) by UVB (290-320 nm, max. 312 nm) irradiation stress using immunoblot and indirect immunofluorescence analysis in in vivo and in vitro experiments. The HSP27 was constitutively expressed and distributed in the cytoplasmic fraction of Pam 212 cells (mouse keratinocyte line) or dorsal skin. The increase in the cytoplasm HSP27 level induced by UVB irradiation was less than two-fold that in nonirra-diated controls. On the other hand, the translocation of HSP27 from cytoplasm to the nucleus or perinuclear area was time- and dose-dependently induced by UVB irradiation. After UVB irradiation, three isoforms having different isoelectric points were detected in nucleic HSP27 by two-dimensional immunoblotting. The most basic isoform was the unphosphorylated type and the two acidic isoforms were phosphorylated, suggesting that HSP27 is phosphorylated in response to UVB irradiation and accumulates in or around the nucleus as a phosphorylated isoform. These results suggest that the translocation and phosphorylation of HSP27 are induced in response to UVB-irradiation stress.  相似文献   

9.
Abstract— The induction of umu + gene expression caused by irradiation with near ultraviolet light (BLB; black light blue) was studied in Escherichia coli K-12 strains with special reference to the effects of SOS repair deficiencies. The umuC + gene expression was measured as the enzymic activity of (J-galactosidase which is regulated by the promoter of the umuC + operon carried in a plasmid DNA carrying a promoter of umuC* operon, a umuD + gene and a umuC +- lacZ + gene fusion. A high induction of the umuC + gene expression was observed in the uvrA cells in the case of BLB or UV irradiation as compared with the parental wild-type cells. Caffeine inhibited the induction of the umuC* gene expression due to BLB or UV irradiation in both strains. There was very little induction in lexA and recA mutants. In contrast with UV irradiation, there was no killing of cells by BLB irradiation in any strain (wild, uvrA, lexA and recA). Possible implications of the present experimental results were discussed.  相似文献   

10.
Light induces heat-shock gene HSP70A by a heat stress-independent pathway. Analysis of mutants defective in plastid-localized chlorophyll synthesis as well as feeding of chlorophyll precursors have previously provided evidence for the participation of the chloroplast in this light induction. An involvement of photosynthesis appears unlikely because an inhibitor of photosystem II and various mutations causing defects in photosystems I and II or the cytb6/f complex did not affect light inducibility. The competence of a mutant defective in carotenoid biosynthesis for induction of HSP70A by light also ruled out the involvement of photoreceptors with a carotenoid-based chromophore like chlamyrhodopsin. Analysis of the wavelength dependence of HSP70A mRNA accumulation revealed a major peak around 600 nm and a minor one around 450 nm. This suggests that a novel photoreceptor mediates this induction. Continuous irradiation during the induction phase was required for a sustained accumulation of HSP70A mRNA, indicating that continuous triggering of the signaling pathway is needed. A prerequisite for this light induction is a state of competence achieved by incubation of the cells in the dark for at least 1h.  相似文献   

11.
12.
Heat shock proteins (HSPs) in their molecular capacity as chaperones have been reported to regulate the apoptotic pathway and also play a critical role in protein conformational diseases such as Alzheimer's disease (AD). As all Down syndrome (DS) brains display AD-like neuropathology, neuronal loss in DS was shown to be mediated by apoptosis. We decided to investigate the expression patterns of HSPs in seven brain regions of adults with DS using two-dimensional polyacrylamide gel electrophoresis (2-DE). Following 2-DE, approximately 120 protein spots were successfully identified by matrix-assisted laser desorption/ionization--mass spectrometry (MALDI-MS) followed by quantification of the identified proteins. We unambiguously identified and quantified nine different chaperone proteins. Accordingly, all but three chaperone proteins did exhibit a significant change in expression. HSP 70 RY, heat shock cognate (HSC) 71 and glucose-regulated protein (GRP) 75 showed a significant decrease (P < 0.05) in DS temporal cortex whereas HSP 70.1 and GRP 78 were significantly increased (P<0.05) in cerebellum. Whilst T-complex 1 (TCP-1) epsilon subunit showed a significant decrease (P< 0.05) in parietal cortex, a similar extent of increase (P<0.05) as that observed in cerebellum was obtained in parietal levels of GRP 78. Alpha-crystallin B, HSP 60 and GRP 94 did not show any detectable changes in expression patterns. This report presents the first approach to quantify nine different chaperones simultaneously at the protein level in different brain regions and provides evidence for aberrant chaperone expression patterns in DS. The relevance of this aberrant expression patterns are discussed in relation to the biochemical and neuropathological abnormalities in DS brain.  相似文献   

13.
The effect of a change in the concentration of c-myc protein on the expression of genes for two phosphoglycerate kinase isozymes was investigated. The steady state levels of messenger ribonucleic acids (mRNAs) for sperm-type and non-sperm-type proteins were determined by blot hybridization using the RNA of the mouse cell line 38-2 containing the inducible rat c-myc gene cultured under various conditions. Without induction the c-myc gene. mRNA for non-sperm-type protein was detected at a level that remained essentially constant during both activation and inactivation of the c-myc gene. mRNA for sperm-type protein was not detected in 38-2 cells cultured under any conditions used. Change in the amount of c-myc protein alone does not appear to bring about a switch of the expression of the two phosphoglycerate kinase genes during spermatogenesis in mouse testis.  相似文献   

14.
A proteomic approach has been used to establish a proteome map and differentiate between the protein composition of tonsils from patients with chronic tonsillitis (CT) and that of tonsils with hyperplasia (HPL). Two-dimensional gel analysis was performed with material from four patients with HPL and five patients with CT. An average of approximately 600 spots were detected in each gel. A total of 127 different proteins were identified in 158 spots analyzed by mass spectrometry. Our study revealed disease-associated differences between protein abundance for two protein spots, an HSP27 isoform and UMP-CMP kinase. Both protein spots were more abundant in the CT group. HSP27 ELISA was performed for 32 patients, 12 belonging to the HPL group and 20 to the CT group. ELISA could not be used to differentiate HSP27 isoforms nor to distinguish CT from HPL. HSP27 was found to migrate to two further protein spots in the 2D gels. The differently expressed HSP27 isoform migrated as the most acidic of all the HSP27 isoforms detected, indicating the highest degree of phosphorylation. The sum of all three HSP27 abundances in the gels from the CT group was not different from that of the HPL group, consistent with the ELISA results. Our results suggest that phosphorylation differences caused the observed migration differences of HSP27. Together with the UMP-CMP kinase abundance differences, we conclude that kinase and/or phosphatase activity are different in CT and HPL. This paper was presented at the 38th Annual Meeting of the German Society for Mass Spectrometry (DGMS) held in March 2005 in Rostock, Germany.  相似文献   

15.
Two genes coding endo-β-1,4-glucanases were cloned from Trichoderma asperellum PQ34 which was isolated from Thua Thien Hue province, Vietnam. The expression of these genes in Pichia pastoris produced two enzymes with molecular masses of approximately 46 kDa (about 42 kDa of enzymes and 4 kDa of signal peptide). The effects of induction time and temperature, inducer concentration, and culture medium on the endo-β-1,4-glucanase activity were investigated. The results showed that the highest total activities of two endo-β-1,4-glucanases were approximately 4.7 × 10?8 kat (from Glu1-TA gene) and 7.3 × 10?8 kat (from Glu2-TA gene) occurred after 4 days of induction using 25 mL L?1 methanol at 30?C when the yeast cells were cultured in a YPL medium.  相似文献   

16.
We describe a group of small-molecule inhibitors of Jun kinase (JNK)-dependent apoptosis. AEG3482, the parental compound, was identified in a screening effort designed to detect compounds that reduce apoptosis of neonatal sympathetic neurons after NGF withdrawal. We show that AEG3482 blocks apoptosis induced by the p75 neurotrophin receptor (p75NTR) or its cytosolic interactor, NRAGE, and demonstrate that AEG3482 blocks proapoptotic JNK activity. We show that AEG3482 induces production of heat shock protein 70 (HSP70), an endogenous inhibitor of JNK, and establish that HSP70 accumulation is required for the AEG3482-induced JNK blockade. We show that AEG3482 binds HSP90 and induces HSF1-dependent HSP70 mRNA expression and find that AEG3482 facilitates HSP70 production while retaining HSP90 chaperone activity. These studies establish that AEG3482 inhibits JNK activation and apoptosis by a mechanism involving induced expression of HSP proteins.  相似文献   

17.
18.
The ongoing anthropogenically caused ozone depletion and climate change has increased the amount of biologically harmful UV-B radiation, which is detrimental to fish in embryonal stages. The effects of UV-B radiation on the levels and locations of DNA damage manifested as cyclobutane pyrimidine dimers (CPDs), heat shock protein 70 (HSP70) and p53 protein in newly hatched embryos of pike were examined. Pike larvae were exposed in the laboratory to current and enhanced doses of UV-B radiation. UV-B exposure caused the formation of CPDs in a fluence rate-dependent manner, and the CPDs were found deeper in the tissues with increasing fluence rates. UV-B radiation induced HSP70 in epidermis, and caused plausible p53 activation in the brain and epidermis of some individuals. Also at a fluence rate occurring in nature, the DNA damage in the brain and eyes of pike and changes in protein expression were followed by severe behavioral disorders, suggesting that neural molecular changes were associated with functional consequences.  相似文献   

19.
20.
Abstract The proteins induced by heat and other stressors, called heat shock proteins (HSP) or stress proteins, are considered to play a general role in protection from cellular injury. Exposure to UVA (320400 nm) following application of 8-methoxypsoralen (8-MOP), termed PUVA is commonly used in the field of dermatology. In order to understand the induction of HSP in PUVA-treated human skin, indirect immunofluorescence using a monoclonal antibody specific for the 72 kDa HSP (HSP 72) was carried out in organ-cultured normal human skin that was treated with PUVA. When the organ-cultured skin was treated at 37°C for 1 h with 8-MOP at a final concentration of 10 or 100 μg/mL and exposed to UVA (51.3 kJ/m2), nuclear immunofluorcscence of HSP 72 was detected in the epidermal cells 12 h after UVA irradiation. In contrast, the induction of HSP 72 was not detected either by UVA irradiation or 8-MOP treatment. These results suggest that PUVA treatment is one of the stressors for human skin, and DNA damage caused by PUVA induces HSP 72.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号